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1. Introduction

In the last few years, the Coulomb excitation process has become a valu­
able tool for the investigation of low lying nuclear states. Several review 

articles on the experimental and theoretical aspects of Coulomb excitation 
have appeared, (1)’ (2)’ <3)’ (4) which contain bibliographies of the earlier 
work on this subject*.

The Coulomb excitation process has certain advantages over other nuclear 
reactions. The fact that the forces responsible for the process are well under­
stood, and the theory is well developed, allows one from a careful analysis 
of the reaction to determine a number of quantities characteristic of the 
nuclear states. The main approximation in the existing calculations is the 
use of perturbation theory which is valid if the probability for nuclear exci­
tation in a single encounter is small. If protons or a-particles are used as 
projectiles, and if the bombarding energy is kept so low that no nuclear 
reactions take place, this criterion will always be fulfilled. In these cases 
there is, however, a strong limitation on the number of states which can be 
investigated. The limitation lies, firstly, in the selection rules for the low mul­
tipole interactions which are important for the excitation process. Secondly, 
only low lying states are accessible, since the reaction for higher excitation 
energies soon becomes adiabatic. A way to overcome these difficulties is to 
use heavier ions as projectiles. The electric field exerted on the nucleus then 
becomes so large that higher order processes occur. While, e. g., a state with 
spin 4+ in first-order perturbation treatment can only be reached from a 
ground state of spin 0+ through an £4 interaction, it might already in second 
order be excited through a state of spin 2+ by means of quadrupole inter­
actions. In many cases, one might still use the perturbation expansion to 
calculate the excitation probabilities (see ref. 1, Chapt. Il 1), and ref. 2). 
If, however, the interaction becomes so strong that many levels are actively 
involved in the excitation process, one has to solve directly the set of coupled

In the following, the notation of ref. 1 will always be used.
1*  
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equations which describes the population of the nuclear states during the 
collision.

The feasibility of such multiple excitations with heavy ions has recently 
been proved and, from these experiments as well as from the following 
calculations, it seems that a number of new possibilities are opened for the 
investigation of nuclear states(5)> (6).

In the following we shall consider such multiple excitations. In Section 
2, a discussion is given of the parameters which are important for the 
process. Section 3 contains the general formalism, while the following sec­
tions are concerned with special models and numerical tables.

2. Characteristic Parameters

The Coulomb excitation process is characterized by a number of para­
meters. These quantities describe the kind of approximations which are 
appropriate for the process in question.

A parameter which describes the motion of the projectile in the Coulomb 
field of the nucleus is t] defined by 

where ZA and Z2 are the charge numbers of the projectile and the target 
nucleus, respectively, while v is the relative velocity of the incident particle 
and the nucleus. While for protons this parameter may be as small as two, 
it is, for the heavy ions which are being considered in the following, always 
much larger than one. Since, furthermore, the projectile in a collision loses 
only a small part of its energy, one may to a very good approximation use 
a classical description for its path. The hyperbolic orbit of the particle will 
be described by the deflection angle & (see Fig. 1).

The Coulomb interaction between the projectile and the nucleus is given 
by (see ref. 1, Eqs. (If A. 8) to (If A. 11))

(2.2)

where o (?) is the charge density operator at the position r of the nucleus and 
r'jj (/) is the position vector of the projectile, which for a given hyperbolic 
orbit is a known function of time. The interaction can be expanded in mul­
tipole components
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Fig. 1. Classical picture of the projectile orbit in the Coulomb field of the nucleus. The hyper­
bolic orbit of the projectile is shown in the frame of reference where the nucleus is at rest. The 
coordinate system which is employed in the present paper, with the z-axis along the axis of 
symmetry, is indicated. The charges of nucleus and projectile are denoted by Z2e and ZYe, respect­

ively, v is the initial relative velocity, and & is the deflection angle.

OC + A

(0 = 4 71 Z1 c J57 y, 2IT1 (EÀ’ ’
Â = 1 =

(2.3)

where 9A(Ez, /<) is the electric multipole moment of order z of the nucleus 
defined by

ft) = dr. (2.4)

In first order perturbation treatment, one finds the following expression 
for the total probability P for the transition from the nuclear state 1 to the 
state 2 in a given collision with deflection angle & (see ref. 1, Eqs. (II A. 4), 
(II A. 28), and (II A. 29)):

Here, a is half the distance of closest approach in a head-on collision

ZiZ2e2 
inv (2-6)

where in is the reduced mass of the projectile and the target nucleus. The 
reduced transition probability B(EÅ, 1%) defined by
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-2-/f+1 KA II’»(£-’•) Il ^>l2-

For two states with spins Ir and /2, practically only one valne of z will give 
a contribution to the sum in (2.5).

The orbital integrals A,. (û, £) depend on the deflection angle and 
on the parameter £ which is defined by

£l->2 “ ‘If ‘ll —
ZiZz^Ez-^ Ei

hv 2E (2-8)

The quantities and are given by (2.1), substituting for the velocity the 
initial and final velocities, respectively. Similarly, Er and E2 denote the 
energies of the nucleus in the states 1 and 2, while E is the energy of the 
projectile. The parameter £ measures the suddenness of a head-on collission. 
In general, the suddenness is measured by the quantity

(2-9) 
sin -

If £($) is large, the process is essentially adiabatic and the excitation proba­
bility small. If £ ($) is small, the process has the character of a sudden 
impact and one may use a sudden approximation.

In the case of multiple Coulomb excitation, the parameter £ is no more 
a characteristic of a nuclear state. A definite nuclear state can in this case 
be populated in different ways. The £ which is important for the excitation 
of the stale in question need not be the one corresponding to the excitation 
from the ground state, but is rather a set of £’s corresponding to the transi­
tions through which it is populated.

The validity of the perturbation treatment which leads to the result 
(2.5) is guaranteed if P is small compared to one. We may introduce the
square root 
measure of 
through the

of the contri to P from a definite multipole order as a 
the strength with which the state 2 is coupled to the state 1 
interaction with the projectile

Z&2(0, f)-±t<P&2(0, 0- (2.10)

The sign is to be the same as the sign of the reduced matrix element 
</1H^(EÂ)||/2>-
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If all the parameters / which connect the states of the nucleus are small 
compared to unity, one may use a first order perturbation treatment. This 
will practically always be the case when protons are used as projectiles. 
For a-particles and heavier ions, the y’s will also mostly be smaller than 
one if the matrix elements are of the order of the single-particle value (see 
ref. 1, Chapt. II A). One may, in such cases, still use the perturbation treat­
ment, when necessary, to second or third order (see ref. 1, Chapt. II I)). If, 
however, the nucleus possesses excited states of collective type(8) with strongly 
enhanced B (E 2) transition probabilities, /(2) might be as large as 5. Then, 
one has to use an approach which avoids the perturbation expansion. On 
the other hand, states with large quadrupole transition probabilities have 
usually small excitation energies, and one may use an expansion appro­
priate for small £.

The parameter / (&, £) attains its largest value for £ = 0 and # = %. It 
will be useful to introduce this value as the fundamental parameter, in the 
same way as £ is used instead of £ (#). We thus define (see ref. 1, 
Chapt. II E. 4)

(2.n) 
(2Â+1)!! hv + l

It will also be convenient sometimes to introduce the value of /(#,£) for 
£ = 0, but arbitrary # as a parameter. We call this / (#) and, according to 
(2.5), (2.10), and (2.11), it is defined by

Table 1
A survey of different limiting cases of the characteristic parameters tj, and /. 
In the table is indicated the kind of approximation which is appropriate for the 
different cases and the values of 2 for which computations have been performed. 
The calculations mentioned under the heading “I- arbitrary” are quoted in ref. 1. 
The computations for arbitrary rj and £ << 1 are given in ref. 11, while those men-

tioned in the last entry refer to the present work.

T] arbitrary V >> 1
semiclassical

£ arbitrary
Z << 1
1. order perturbation
2 = 1, 2

Z < 1
1. and 2. order perturbation
2 = 1, 2, 3, 4

£«1 
sudden 
approximation

Z << 1
1. order perturbation
2 = 3, 4

% arbitrary 
multiple excitation
2 = 2
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Z&2W-Z&2 (2Â- 1)!!
"(A -1)1 ' 71 y

(2 2+ 1)^ (2.12)

In Table I, a survey is given of the different limiting cases for which com­
putations on Coulomb excitation have until now been macle, including the 
present work. In the following, we shall limit ourselves mainly to the case 
of quadrupole excitations (Â = 2).

3. General Theory

In this section, we investigate the equations which determine the mul­
tiple Coulomb excitation and discuss some general approximation methods. 
It will be shown that the special solution for £ = 0 and # = % is a convenient 
basic solution by means of which the excitation probability for small values 
of £ and arbitrary angles may be expressed.

A. Expansion Methods

The Schrôdinger equation for the nuclear state vector | ip > is

^^1 = [§o + ^(Ol lv)>> (3.1)

where V)o is the Hamiltonian of the free nucleus and (/) the interaction 
energy given by (2.2), (2.3), and (2.4). Il will be useful to introduce a new 
state vector | ø > defined by

I y > = e * ° | 0>. (3.2)

Before and after the collision this state vector is time-independent and it 
satisfies the equation

zr,ô7|0> = ^(/)|0>’ (3-3)

where

bW-e” ■S}E(t)eh . (3.4)

The equation (3.3) may also be formulated as a set of coupled differential 
equations for the amplitudes on the nuclear eigenstates. If we thus define

aw(O = <nl^>’ (3.5)

where | n > is the lime-independent eigenstate belonging to the eigenvalue
''PO’
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we obtain
I n > = En I n > > (3-6)

z/ïôn
l-(En-Em)t

= JE?<77 I 'WO I 7n> «m(0-
m

(3.7)

The solution of (3.3) and (3.7) can often conveniently be expressed as a 
series in powers of (f). This is the usual perturbation expansion which 
can be obtained by an iteration procedure. It can be written in a closed form 
due to Dyson

|0(O> = Te/!)— |0(f = -oo)>, (3.8)

where the symbol T stands for the time ordered product, i. e.,

(3-9)

If the nucleus before the collision is in the ground state | 0), the solution 
(3.8) leads to the following expression for the amplitudes on the different 
excited states after the collision :

i Ct* dt
an(+oo) = <n\Te |0>. (3.10)

When one inserts the series (3.9), one obtains exactly the usual perturbation 
expansion for the excitation amplitudes.

As has been mentioned above, the case where £ = 0 for all states in­
volved is of special importance for the problem of multiple Coulomb exci­
tations. In this case, one has En = Em and £) = £), and one can then leave 
out the time ordering in (3.8). The expression (3.10) now takes the simple 
form f00

\ $ (0 dt
an(+o°) = <n I e |0> (3.11)

characteristic of the sudden approximation. This formula is also applicable 

in cases where since, for the evaluation, it is not necessary
J—00

to perform a series expansion of the exponential function.
By means of formula (3.11) one may thus avoid the perturbation ex­

pansion. On the other hand, the effect of the motion of the nucleus during
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the collision has been neglected. The sudden approximation, however, 
forms a convenient starting point for a series expansion in powers of £)0. 
Such a series expansion is generated by the following substitution:

I 0> = e hJ~x I (p>. (3.12)

The Schrödinger equation (3.3) then takes the form

(3.13)

In this expression, one can expand ê (/) in powers of in the following way:

■MO = Ö£(0 + ^ [.^0J^(0]+|(^j + -• • (3.14)

and (3.13) takes the form

= [&0 §2?(0]] +■••} !<?>>, (3.15)

where

§0 = ^^°° Öoe*l-K . (3.16)

The expression on the right-hand side of (3.15) is a series in powers of 
nuclear energy differences times the collision time, i. e., it is a series in 
powers of the £’s involved. If we express the solution in a similar way,

I?’>==l99o> + l99i> + l ^2 > + '••> (3.17)

where | (pr > is of the order £ times | 9?0 >, | (p2 > of the order £2 times | cp0 >, 
etc., we obtain the following set of differential equations for these | <pn>’s:

• f. d I 9?o > 
,n ar = 0

. t d I 091 ) i r— - / X 1 I

= I 9T> + |[^ I 9’o>
(3.18)



Nr. 8 11

The initial condition determines | ç?0) to be

I <?o > = I 0 > . (3.19)

From |y0> one may determine | çy >, | cp2 >, etc. by means of quadratures

I' tôo(O.ÇE(0]|o>/ Z QQ
I % > - 4 (df I' ®o (/')] (dr r [$„ (/"), (/")] 10 >

‘I •—X 00
+’ fdf' r2 [$„ («'), S„ (o, », (nu i o >.

(3.20)

If the interaction energy !qe (/) tends to zero sufficiently rapidly, all inte­
grals converge, and (3.20) oilers a systematic expansion in powers of the 
£’s. In the case of quadrupole Coulomb excitation, however, foE (0 is of 
the order of | t |-3 for large times, and already the second term in | cp2 ) 
diverges. This difficulty is also encountered if one tries to expand the or­
bital integrals Z2 |U(#, £) in powers of £. The exact expression for these 
quantities in terms of confluent hypergeometric functions (see ref. 1, Eq. 
(II E. 50)) shows that the correct expansion is of the form

/2;/z(^, 0- « + tê+cê2 + de2iogê+---. (3.21)

In the following, we shall calculate only the first order terms of (3.20). 
For the evaluation of the higher terms a cut-off procedure might be used.

B. Choice of Coordinate System

In earlier calculations of Coulomb excitation, the orbital integrals were 
evaluated in the so-called focal system. In this coordinate system the z-axis 
is perpendicular to the plane of the orbit, and the x-axis is along the sym­
metry axis of the hyperbola. In this paper, another system will be used, 
where the z-axis is along the symmetry axis (see Fig. 1). This system is of 
special convenience for head-on collisions (# = %), where the invariance of 
the entire Hamiltonian for rotations around the z-axis ensures the conser­
vation of the magnetic quantum number during the excitation process.
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The time-dependence of the interaction energy (2.3) is, for 2 = 2, given by 
the collision functions

S’2,,<(0 “<(') I»,,< M'L MOL (3.22)

In the new coordinate system these collision functions are explicitly given by

^2, 2(0 = ^2,-2 (0 = 1/ 15 1
V 32a MO2

^2, 1 (Û = ^2,-1 (0 = - 1 1iÆ 1 • zp(0-yp(Ö
t 8%r?,(/)3 ^(02

^2, 0 (0 = •l/ 5 1 3 zp(Û2-r5 
1 16 7rrp(Û3

(3.23)

For the perturbation treatment, the important quantities are the orbital 
integrals defined by

SE2, „ (■». !) - i K. „ (0 ’S»‘ ■ (3-24)
«- — 30

In the old focal system these orbital integrals were expressed by means of 
the tabulated functions I2 (see ref. 7) in the following way:

- ^2 Y2.,. (f. <>) L.,, (», £)• (3.25)

In the new coordinate system one can again express the orbital integrals 
in terms of the Z2jU.

S£2, 0 (», O - T. |/j~ {| L. 0 (#. f) + J 4, 2 (». f) +1 4, -2 (.», 0 }

M, ± 1 (»■ f) - ^2 )/3^ J i h. -2 (,». O - 1 L, 2 (*,  f) J

M, ±2 (0. J I h. 0 O - p2. 2 <«■ 0 - JO, -2 (^ O |

(3.26)

Since S2 ±i(f) is an odd function of time, one sees that S2 ±j vanishes 
for £ = 0. The two remaining orbital integrals can be expressed in a way 
similar to (3.25):

sE2.(O - 0) - - A y2. „ o) j2, ml <3-27)
where
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*^2, ±2 ($) — 2 ^2, O ($> 0) ^2, 2 (^’ 0)] 

^2>oW=|/2)2(^O)+|/2>o(^ 0).
(3.28)

These quantities can be expressed by elementary functions, since (see ref. 1,
Eq. (II E. 71)) 4,±2(^ °) =|sin2f

4, o 0) = 2 tan2 |
(3.29)

and they are tabulated in Table 2.

"Fable 2.
The classical orbital integrals for £ = 0 in the coordinate system of Fig. 1. In the 
two first columns, the functions </2>0 (fl) and J2,2 (#) (see Eq. (3.28)) are listed as 
functions of the deflection angle &. The third column shows the ratio J2>2 (fl)/ 
J20 (fl) which is important for the % (fl) approximation, while the last two columns 
contain the quantities

Zeff W/z^.o w I J2,0 (^) and z (fl) / z= J/(J27(^))2 + 3(J22 (W / d20 (*)•

The entries are given in the form of a number followed (in paranthesis) by the power 
of ten by which it should be multiplied.

fl fl2,o W J2>2 (#) J2,2l-f2,0 Zeff/Z z (^)/z

0 0.0000 0.0000 3.333 (—1) 0.00000 0.00000
10 1.4257 (—2) 4.1288 (—3) 2.896 (—1) 0.01069 0.01196
20 5.3589 (—2) 1.3386 (—2) 2.498 (—1) 0.04019 0.04379
30 1.1360 (—1) 2.4285 (—2) 2.138 (—1) 0.08520 0.09085
40 1.9054 (—1) 3.4574 (—2) 1.814 (—1) 0.1429 0.1498
50 2.8102 (—1) 4.2878 (—2) 1.526 (—1) 0.2108 0.2180
60 3.8180 (—1) 4.8467 (—2) 1.269 (—1) 0.2864 0.2932
70 4.8973 (—1) 5.1078 (—2) 1.043 (—1) 0.3673 0.3732
80 6.0169 (—1) 5.0792 (—2) 8.442 (—2) 0.4513 0.4561
90 7.1460 (—1) 4.7935 (—2) 6.708 (—2) 0.5360 0.5396

100 8.2543 (-1) 4.2997 (—2) 5.209 (—2) 0.6191 0.6216
110 9.3125 (—1) 3.6570 (—2) 3.927 (—2) 0.6984 0.7000
120 1.0293 2.9301 (—2) 2.847 (—2) 0.7720 0.7729
130 1.1170 2.1831 (—2) 1.954 (—2) 0.8378 0.8382
140 1.1921 1.4772 (—2) 1.239 (—2) 0.8941 0.8943
150 1.2527 8.6659 (—3) 6.918 (—3) 0.9395 0.9396
160 1.2971 3.9600 (—3) 3.053 (—3) 0.9728 0.9728
170 1.3242 1.0393 (—3) 7.848 (—4) 0.9932 0.9932
180 1.3333 0.0000 0.000 1.0000 1.0000
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For the special case & = n, one has yp = 0, and the only non-vanishing 
collision function is S2> 0(f). In this case, </2,/t (7) = 4/3<5u>0. The special 
simplification for backward scattering is connected with the symmetry of 
the problem around the z-axis.

Also for one can obtain some general rules by symmetry consider­
ations. The Hamiltonian is thus always invariant under a reflection in the 
plane of the orbit. This reflection brings a state vector | I, M) with spin I 
and magnetic quantum number M into a state | I, —My. One finds

\i, My^(-iy+M+I\i,-My, (3.so)

where p is the parity of the state. This rule implies that the excitation prob­
abilities of states with magnetic quantum numbers M and — M are equal, if 
the initial state is unoriented. The equality of S2 and S2 follows also 
from this symmetry.

For £ = 0, one has the additional symmetry that the Hamiltonian is in­
variant under a rotation of 180 degrees around the z-axis. This rotation gives 
rise to the following transformation:

\I,My^einM\I,My, (3.31)
which implies

(-1)M/-M*=1,  (3.32)

where Mf and Mf are the magnetic quantum numbers in the final and 
initial states, respectively. The disappearance of Si>±1 for £ = 0 is also a 
consequence of this symmetry.

C. Dependence on Deflection Angle

In the sudden approximation, the interaction energy içE (/) only enters 
through the expression (see Eqs. (2.3), (3.22), and (3.27))

<3-33> 
/z

In this expression it will be convenient to collect the dependence on Zx, v, 
and a in the parameter /, which corresponds to the excitation from the 
ground state with spin Io to one of the excited states with spin I1.

= ( /p|i 2k (E 2) 71 )
1 15 fi va2 |/ 2 /p + 1 (3.34)
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The expression (3.33) then takes the form

Z0-^l 1 9 5 2, 0p2
(3.35)

The relative order of magnitude of the terms with | w | = 2 and // = 0 is 
given by the ratio .72,2 ($) I ^2,0 ($)• This ratio, which vanishes for •& = 71, 
is given numerically in Table 2 and it is seen that it is very small for most 
angles.

This observation gives rise to the convenient approximation of neglecting 
the terms with | /z | = 2. In this approximation, (3.35) has the same form for 
all angles and one may write it as follows:

i J %>E (0 (lt = - Zeff W |/9 71 y2,0 oV2,oO) 9)1*  (E 2,0) j/2 /o + 1
<Z0||3Ji(£2)||/i> ’

(3.36)

where

Zeff (^) ~ Z0"»1 j2’0(%) ~ 4 ^2,° Zo->1 • (3.37)

If one uses the approximate interaction Hamiltonian (3.36), the final state 
vector for arbitrary deflection angles | ø ($, /) > is simply related to the 
state vector for backward scattering, i. e.,

|0(#,Z)>~ I 0(7T, Zeff (#))>• (3-38)

The accuracy of this approximation can easily be estimated by writing 
the state vector | ø (#, /) > in the form

which follows from (3.11) and (3.35). In this expression, a series develop­
ment of the exponential function may be performed, and one is thus led 
to the following expansion which contains (3.38) as the first term:

I Z) > = I Zeff (#)) >

(3.40)
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An indication of the accuracy of the approximation (3.36) can be ob­
tained by applying it to the old perturbation calculation. For £ = 0 one thus 
finds, by considering only the term with // = 0, a total cross section which 
only dillers 5 per cent from the correct one, even though the forward angles, 
where the approximation is worst, here play a rather important role.

In the following, we shall apply the approximation (3.38) and in a num­
ber of cases also investigate the accuracy by calculating the correction terms 
in (3.40).

We have earlier, in Section 2, introduced a quantity / (#) (see Eq. (2.12)) 
which is not very different from /eff($); the connection between them is 
given by

zW-z|hAoW)2 + 3(J22(*>)) 2

Zerf (^) | . 3/feWV
2p2„(ø4

I (3.41)

As can be seen from Table 2, the two quantities / ($) and /eff (#) differ 
al the most by 15 per cent, but for most angles the difference is much 
smaller. For foreward angles where the difference is largest, the excitation 
process can essentially be treated by the first order perturbation theory, where 
the excitation probability is | / (#) |2. If we thus substitute / (#) for zeff (#) 
in the approximation (3.38), we have made a change only of the order of 
(J2, 2 l^2,o ($))2, but on the other hand obtained an expression which leads
to the correct result for the excitation probability for foreward angles.

In the more general case where the sudden approximation is not applic­
able, the interaction energy (/) enters in a more complicated way into 
the problem. For # = %, again only the term with // = 0 will appear. For 
other angles, however, the order of magnitude of the terms with /t 0 
depends directly on the collision functions (see Eq. (3.23)). These, especially 
*^2,1(0» are hi general not very small compared to S20(f), and the ap­
proximation is thus only valid in the neighbourhood of û = n. One may here 
investigate the angular dependence by considering the terms with // 0 in 

(0 as a perturbation in the Hamiltonian. In the sudden approximation, 
this method would just lead to the result (3.40).

For the sake of completeness it should be mentioned that, once the final 
amplitudes M (co) on the states with spin I and magnetic quantum num­
ber M are known, one may easily obtain all the quantities which are import­
ant for the experiments. Thus, the total excitation probability of a level of 
spin If is given by
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(3.42)

The differential cross section da is obtained by multiplying P with the 
Rutherford cross section, i. e.,

- PifTidaR
(3.43)

The angular distribution of y-quanta emitted after the excitation is also 
calculable from the amplitudes. One must here take into account that a level 
which emits the y-quantum under consideration may be populated not only 
through an excitation, but also through the deexcitation by cascade y’s from 
higher excited states.

4. Diagonalization Method

In this section, we shall discuss a method of evaluating the multiple 
Coulomb excitation which does not use any specific nuclear model. We shall 
thus consider the properties of the nuclear states, i. e., energies and transi­
tion matrix elements as empirically determined quantities. Since, in this case, 
we have a very large number of parameters in the problem, it is not practi­
cally possible to give a systematic numerical tabulation of cross sections, 
etc., and we shall therefore confine ourselves to a few numerical examples 
which illustrate some important aspects of the problem.

A. Sudden Approximation

In the sudden approximation (3.11), we have the following expression 
for the final amplitude an on the state | n): 

(4.1)

where the exponent is given by (3.33) or (3.35). If the wave functions of 
the nuclear states are known, the problem is reduced to calculate matrix 
elements of a known operator. Usually one will be interested, however, in 
calculating the cross sections from a knowledge of the matrix elements of

Mat. Fys.Medd.Dan.Vid.Selsk. 32, no. 8. 2 
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the multipole operators themselves. t hese matrix elements enter in other 
processes also and are often determined from nuclear spectroscopy.

In order to perform this calculation, we introduce a unitary transforma­
tion U which diagonalizes the hermitian operator (3.33) and which is thus 
defined by the equations

U = UU' = 1 (4.2)
and

“ • —00

= 3” <n iimi|&E(o(it ip><p i ui Q>•

— 1 ' ‘I •—OO
p

(4.3)

The result (4.1) can then be expressed in terms of U and the eigenvalues X 
in the following way:

. -J M)««
an = (n I UlP e h CGf|0>

= JF < n | F | m > e“*2™ < m | C7+ | 0 >
m

= y<7î|[7|m><0|(7| m >*  e~U™.

(4-4)

m

The determination of U requires the knowledge of the matrix elements 
of the operator (3.33). If we specify (he nuclear states by means of the spin 
In and magnetic quantum number Mn, these matrix elements are expressible 
by the reduced multipole matrix elements*̂  defined by

For the diagonalization it will be convenient to apply the / ($) approxi-
,e0C

mation. In this approximation, the operator \ (/) dt (see Eq. (3.36)) is
• —00

diagonal in M, and one may write the matrix elements in the form

< 4^4/| ( (Z) (// | 7^3/ > Zeff (^) > (4-6)
•/—00

where the (symmetric) matrix o^n is defined by

For the angular momentum algebra we use throughout this paper the notation of ref. 9.
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Qmn
<Jm H 9Jl(E2) II /ra>
</0||^(E2)||/1> *

(4.7)

The number of states which have to be included in the matrix (4.6) by 
the diagonalization depends of course on the %’s. Only those states which 
are mutually connected with large (collective) matrix elements must be taken 
into account. One may furthermore classify these in different groups where 
states within a group are strongly coupled, while states from two different 
groups are weakly coupled. A group consists, e. g., of the states in a rotational 
band, and the different groups are the bands belonging to different single­
particle states. For each group one must perform the diagonalization and 
must here take into account a number of those states which are most directly 
coupled to the ground state. This number will depend on the %’s and must 
be determined so that the inclusion of still more states would not change 
the result. The weak interplay between the groups can be treated by a per­
turbation calculation.

Since the energy of the projectile and the deflection angle enter only 
through the common factor %eff (#), the diagonalization can be used for all 
energies and all #’s.

The deviation from the %eff ($) approximation is given by the expression 
(3.40) which we may write explicitly in the form 

(4.8)

where rz(()) indicates the amplitude in the %eff ($) approximation. Since, in 
this approximation, 47) = 3/y, it is seen that, while the first term only contri­
butes to this substate, the second term proportional to J22 ($) I Ao ($) only 
contributes to the states with M^ = Mi±2. The third term proportional to 
(J22 (#) / J20 (#))2 contributes to both Mf = Mi and Mf = A^±4. The exci­
tation probability will thus contain no terms linear in J22 (#) / J20 ($)• The 

2*
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terms quadratic in this quantity will arise partly from the square of the second 
term, and partly from an interference between the first and third term.

One may also avoid the / (7/) approximation and the expansion (4.8) 
by directly diagonalizing the matrix of the complete Hamiltonian (3.35). 
This matrix is no more diagonal in the magnetic quantum number M and 
is essentially different for different angles so that the diagonalization will 
have to be performed for all angles.

For not too large values of / ($) it may be advantageous to use the per­
turbation expansion to higher order instead of the diagonalization method. 
The power series expansion of (3.11) leads to the following expression for

= <5no-iZ(^) Qno
1
2! r

i
rs

(4-9)

This expansion can also be useful for the discussion of small changes in 
the matrix elements, e. g., from a rotational model.

B. Examples

In this section, we shall consider some examples of the methods dis­
cussed above. They will mainly be given in order to illustrate how many 
levels one has to take into account in the diagonalization method, and se­
condly to illustrate the accuracy of the perturbation expansion and the /($) 
approximation. For the sake of comparison with the exact treatment (see 
Section 5), we shall use the matrix elements characteristic of a rotational 
band.

For a pure rotational band, one may express the reduced matrix ele­
ments entering in (4.7) by means of the constant intrinsic quadrupole mo­
ment Qo. One finds

< /„ Il 9Ji (E 2) II In> - |/^ (- l)'”-K(2/m -t 

(4.111)
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where K is the (constant) projection of the total angular momentum on the 
nuclear symmetry axis. We shall consider only the case of an even-even 
nucleus with ground state spin Io = K = 0. In this case, the matrix Qmn (see 
Eq. (4.7)) takes the form

-K's (2/»+!)''■ (2/, + !)''■

We shall now successively take more and more states into account. If
we include only the ground state and 
to diagonalize the matrix

I °
Qmn ~ j

the first excited state 2, we have

(4.12)

The eigenvalues of this matrix are

, |/5-3j/6 and
1/5-31/6 (4.13)

The unitary matrix which diagonalizes (4.12) is then found to be

I 18 + J/30
6

j/18 —1/30
6

|/18-/30
6

I 18 + 1/30
6

(4.14)

According to (4.4) we thus obtain the result

(4.15)



22 Nr. 8

The excitation probability P2 = I «1 P is then

(4.16)

This quantity and the probability that the nucleus is left in the ground state 
?o = I ao I2 = ^2 are illustrated in Fig. 2 as a function of /($).

In Fig. 3 and Fig. 4 are shown the extensions of the above calculation
to include two and four excited states in the rotational band. The matrix

in the latter case, is explicitly given by

0 1.0000 0 0 0
1.0000 0.6389 0.8571 0 0

-mn ~ 0 0.8571 0.5808 0.8457 0
0 0 0.8457 0.5692 0.8423

0 0 0 0.8423 0.5649

(4.17)

In the case that one includes only two of the excited states, one linds the 
eigenvalues

20 = -0.9270, z4 = 0.3484 and z = 1.7984 (4.18)

and the matrix U is then

0.6840 - 0.6006 0.4139
-0.6341 - 0.2093 0.7444

0.3605 0.7717 0.5240
(4.19)

The final amplitudes on the three slates are thus, according to (4.4),

a0 = 0.4679 ei0-9270Z + 0.3608 e~* 0-3484Z +0.1713 e-n-7984z
cq =- 0.4338 e* 019270*+0.1257 e_i0-3484*+0.3 0 81 e_u-7984* (
a2 = 0.2466 ei0-9270*— 0.4635 e-*°- 3484Z + 0.2169 e~n-7984Z

Similarly, one linds for the complete matrix (4.17) the eigenvalues 

;0 =-1.0437
= _o.4880 

z2 = 0.4302 
z3 = 1.3920 
z4 = 2.0633

(4.21)

and the matrix U



Nr. 8 23

0.5436 -0.5189 0.4681 -0.3866 0.2582
— 0.5674 0.2532 0.2014 -0.5381 0.5328

0.4795 0.2725 -0.5951 — 0.0218 0.5841
— 0.3461 — 0.6010 — 0.0981 0.5245 0.4840

0.1812 0.4808 0.6137 0.5342 0.2721

Fig. 2. The result of the two-state calculation for a rotational band on a 0+ ground state. The 
probability for the excitation in the 2+ state, P2, and the probability for no excitation, Po, 
are given as functions of x0_^_9(i?) and as a function of the parameter q (ft) characteristic of the 
rotational model (see Eq. (5.11)). The broken curve shows the result of the first order perturbation 

calculation.

Figs. 2, 3, and 4 show a very general feature of the multiple excitation 
process. The excitation probability for a definite state has a maximum as 
a function of /. Where this maximum is reached depends on how directly 
the state is connected with the ground state. The more intermediate states 
that have to be passed, the higher is the value of / for which the maximum 
is attained. For the rotational band on the 0+ ground state, the 2+ state is 
maximally excited for / ~ 1, the 4 for / 2, the 6+ for / 3, etc. The
heights of the maxima decrease as one passes to higher excited states, partly 
because a small tail is left in the excitation probability of the lower states. 
If the band is broken off as in the above calculation, the maximum in the 
excitation of the last state is much higher than that of any of the others.

A comparison of the curves shows that the deletion of higher stales 
practically does not change the excitation probability of the lower states. 
This is true at least as long as the last state included is not strongly excited. 
In Fig. 2, the curve for Po is thus essentially correct until / = 0.8. In Fig. 3, 
the curves for Po and P2 are similarly correct until / = 1.5 and, in Fig. 4, 
one expects Po, P2, P4, and P6 to be correct until / = 3.
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Fig. 3. The result of the three-state calculation for a rotational band on a 0+ ground state. 
The excitation probability in the 2+ and 4+ states, P2 and P4, and the probability for no exci­
tation, Po, are given as a function of (#) and as a function of the parameter q(&) character­
istic of a rotational model (see Eq. (5.11)). The broken curves show the result of the second order 

perturbation calculation.

It is interesting to compare the above results with the perturbation cal­
culation. According to the equation (4.9) one finds

«0 = 1 -0.5900 % (#)2 + z 0.1065 / (#)3 +0.0893 / (#)4-z 0.0242 /
-0.0092 x (#)6

«i =-i X (#) —0.3195 % (#)2 + z 0.3571 z (#)3 + 0.1210 / (#)4-z 0.0551 / (#)5

«2 = -0.4286 x (#)2 + z 0.1742 x (#)3 +0.1274 % (#)4

«3 = + z 0.1208 x (#)3

The power expansion in / of the excitation probabilities contains (since £ 
= 0) only even powers of /. Il is noted that, e. g., a third order perturbation 
calculation leads to the correct answer for P6 to terms of the order of /6, 
while P2 and P4 are correct only to terms of the order of /4, and Po only 
to terms of the order of /2.

In the comparison of the perturbation expansion with the more exact 
treatment given above, we have calculated the excitation probabilities to 
second, fourth, and sixth order. In Fig. 2 is shown the calculation to second 
order (first order perturbation). This gives a good approximation only up 
to / ~ 0.4. In Fig. 3 is shown the calculation to fourth order in /. This is 
good up to /~0.7. Similarly, the calculation to sixth order in / shown on 
Fig. 4 is seen to be correct only up to / ~ 1.0. It thus seems that the pertur­
bation expansion only offers a poor approximation for large values of /.

The accuracy of the / (#) approximation which we have used can be
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Fig. 4. The result of the five-state calculation for a rotational band on a 0+ ground state. The 
excitation probabilities for the 2+, 4+, 6+ and 8+ states P2, P4, Pe and P8, and the probability 
for no excitation, Po, are given as a function of Zo^.9 (&) and as a function of the parameter q (JP) 
characteristic of a rotational model (see Eq. (5.11)). The broken curves show the result of the 

third order perturbation calculation.

evaluated by means of Eq. (4.8). We shall only do the explicit calculation 
in the case of the two-state model (4.12) to (4.16). One finds directly from 
(4.8) the following expressions to second order in J22 (^) /'^2o(^):

f — fl00 - “0

2 i 1/5

■ -20 ”1

z q\ ^22^) 1 7
'22-'Ze!r(’’)j2o(<?p

yZefr(^)f3 3/6
2COS~7~

3/5 3J/6 ... .5/6 . 3J/6
•— (,(,s 7 - Zeff (#) -1 yysin ~y~ Zeff (^ )

Zeff (#) + sin -y" Zeff (#) •

In these expressions, a(0) are the amplitudes in the /eff($) approximation 
(4.15).

From (4.24) one obtains the excitation probability

One observes that the correction term is an oscillating function of Zeff($) 
which has its maxima where shows its minima. The tendency of the
correction is thus to fill out the minima of the excitation probability.

To illustrate the magnitude of the correction we have evaluated (4.25)

(4-24)

(4-25)
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Table 3.
Comparison between the correct excitation probability P2 (&, %) and the z (&) ap­
proximation in the two-state model for z = 3. The quantity Zeff(^) an(l the proba­
bility in the xeff(&) approximation P2(Zeff(#)) as wel1 as Z (#) an(l the correspond­
ing probability P2(z(#)) are listed for different angles together with P2(fl, z).

180° 150° 120° 90° 60° 30°

(#> Z>............................. 0.000 0.031 0.39 G 0.880 0.578 0.072
Zeff (#) ................................ 3.000 2.820 2.315 1.698 0.859 0.256
^(ZeffO ...................... 0.000 0.030 0.387 0.868 0.558 0.064
zW............................... 3.000 2.820 2.318 1.709 0.880 0.272

p2(z(#)).................... 0.000 0.030 0.384 0.863 0.578 0.072

numerically in the case of / = 3, and the result is given in fable 3. One 
observes here that the maximum correction (~ 0.020) appears for angles 
between 60 and 90 degrees. This is connected with the fact that J22 (#) is 
maximal in this range. In the two last rows we have made a comparison with 
the approximation where / (#) is used instead of /etf ($). It is seen that this 
approximation reproduces the correct excitation probability for small angles 
until the angle which gives the maximum probability. On the other side of 
the maximum, the %($) approximation is no improvement over the 
approximation.

C. First Order Expansion in £

In this paragraph, we shall consider the first order corrections in £ to 
the results which were derived earlier in this section.

In Section 3 A, we obtained the following expression for the amplitude

We shall here make the simplifying assumption that û = n. One may use 
the result which we shall obtain, for other angles also, by the usual sub­
stitution Z^Zeff(^)- As was discussed earlier, the approximation is here 
less accurate than it was in the case of the sudden approximation.

The simplification by considering only terms with /z = 0 in is that
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Fig. 5. The function II (A). This function is of importance for the evaluation of the deviation 
from the sudden approximation in the diagonalization method (see Eq. (4.31)).

the unitary matrix
,.OO

U (see Eqs. (4.2) and (4.3)) diagonalizes not only

\ (M> but also
• — 00

and £>e(0- thus have
» — 00

<n (4-27)

and
<»l C’^E(0 A, y (I). (4-28)

where
ft

b (0 = (‘%2, 0 ($> 0)) 1 \ S20 (f) (It
• 0

(4-29)

and
(0 = (*̂Ä2,  0 (^» 0)) 1*$2o(O- (4.30)

The functions SE2 0 and S2 o are defined in Eqs. (3.23) and (3.24), and one 
sees that h (/) is an odd function while g (f) is an even function of /.

By introducing an appropriate number of factors UU'' in (4.26) one may 
write it in the form

(£ 0)

I 0 >,
(4-31)

where the E matrix is the transformed energy matrix

a
lw

L)lm

= V</| U I m >
(4-32)
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Fig. 6. The excitation probability P2 (n, Â) for backward scattering in the two-state model is 
shown as a function of / for £ = 0 and £ = 0.05.

Since a constant energy 
energies in (4.32) by the 
from the ground state, i.

will give no contribution, one may replace the 
£’s corresponding to the excitation of the p’s state 
e.,

a (Ep - Eq)
hu (4.33)

One thus finds
(4.34)

The function H (2) which appears in (4.32) is defined by

v t'°°H (2) = - 2 \ df / 7 (f) sin (2/z (/)).
u oo

(4.35)

One observes that H (2) is a symmetric function of 2, i.c.,

H(-2) = H(2) (4.36)

and that the S matrix is symmetric also in the indices I and m.
The function H (2) has been evaluated numerically and is given in Fig. 5. 

For small values of 2 it is quadratic in 2, as may be seen from (4.35), and 
one finds

H (2) 0.9172 22 (2«1). (4.37)

For larger values of 2, H (2) is an oscillating function whose amplitude 
increases slowly. From formula (4.31) one may thus draw the general con­
clusion that the first order correction in £ is only a slowly increasing (and 
oscillating) function of /.

As an illustration we shall apply the result (4.31) to the two-state model.
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Using the Eqs. (4.12) to (4.16) one finds the following expression for the 
excitation probability to first order in £:

(4.38)

This result is illustrated in Fig. 6, where the excitation probability for £ = 
0.05 is compared to the earlier calculated excitation probability for £ = 0.

5. Excitation of Rotational States

In this section we shall treat the excitation of a rotational band. It will 
be shown that, in the sudden approximation, one can obtain a closed ex­
pression for the cross section including all (infinitely many) states in the 
band. The problem is analogous to the classical problem of a charged 
ellipsoid which is set in motion by a fast projectile. At the end of the section 
we shall make some comments on this classical treatment.

A. Sudden Approximation

We shall assume that we have a pure rotational band and that only this 
band is involved in the excitation process. The Schrödinger equation (3.1) 
for the rotational motion may then be written in the form

Q —

where ip only depends on the Eulerian angles a and ß describing the orien­
tation of the nuclear symmetry axis. The complete wave function ip is con­
nected with ip through the equation

“T^intr*-  (5.2)ip = e n ip (a, p, t) % (rr ), v 7

where % (x') is the intrinsic wave function and Eintr is the intrinsic energy. 
The free Hamiltonian for the rotation Ho is given by

„ 7i2 p2 t 1 d2 I
H° 2 3'jp2+COt/Pß sinpda2p (5.3)
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where 3 is the moment of inertia. Since the quadrupole operator can be 
expressed in terms of the intrinsic quadrupole moment Qo in the following 
way :

ïVi(E2,«) =|Oo^2(u(ß, a), (5.4)

the interaction Hamiltonian 77' (f) is given by

H' (/) - — QoZSip(0 (.ß. *)  ■ (5-5)

The evaluation of the excitation amplitudes in the sudden approximation 
has now been reduced to the calculation of matrix elements of a known 
operator. We shall specify the eigenstates of Ho by means of the spin I, the 
magnetic quantum number M, and the (constant) projection K of the total 
angular momentum on the nuclear symmetry axis. The wave function may 
then be written

VTmK = ]/“W (a> 0), (5-6)
I 4 n

where D!MK is the rotation matrix. The excitation amplitude on the state 
specified by If, Mf, and K is then, according to (3.11), (3.24), and (3.27),

(a, ß, 0))*

x^kC*.  °) exP J .27rZieQ0
11 5 h va2

We shall now first show that the excitation of any rotational band with 
ground slate spin and final state spin If can be expressed by means of the 
amplitudes for the excitation of a band with ground state spin 0. This fol­
lows from (5.7) by expanding the product of the two B-functions on D- 
functions. The amplitude (5.7) may then be expressed in the following way:

- Z (2 A + I)7’ (2 lf+ 1 )v- (2 I + 1 ) (- 1 )M‘~X

(5.8)

where we have introduced the functions
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^M(^ q) = [4 tc (2 Z+1)]_1/s

..271 ..71 q^Y2fi^,o)j2fi(&)Y*2n(ß,X)
x\doc\dß sin ß YJM (ß, a) e

♦'O •'()

(5.9)

One observes that these functions are proportional to the amplitudes on the 
state I, M in a rotational band with ground state spin 0, i. e.,

($> 9) = j i a™ = = 0)

'Fhe quantity q is defined by
Zi e Qo

9 “ 4Ä m2'

(5.10)

(5.11)

This quantity is independent of the spins in the rotational band and plays 
the role of a common /. It is connected with the / corresponding to the first 
excitation in an even-even nucleus with the same intrinsic quadrupole
moment by the relation

(5.12)

The calculation of the excitation cross sections of any rotational band 
is then reduced to the determination of the functions AIM (d, q). From 
Eq. (5.8) one obtains, e. g., according to (3.42), the following formula for 
the excitation probability of the state of spin If:

(2//+l)X<2’+1)( J IO’. 9) I2- (5.13)

’ im \- k K 0/

The functions Az M can most easily be evaluated in the /(#) approxi­
mation where the terms with | /z | = 2 in the exponential function are 
neglected. The integration over a in (5.9) shows then that Az M vanishes 
except for M = 0, where one finds

2
i « tfeff dh pl - 2 ï?eff (&)

AI{)(d, q) AI(}(ti, qei[(d)) = e \dxPj(x)e . (5.14)
»'o

We have here introduced a quantity

9eff (^) =|J2o(^)Z (5.15)

which corresponds to the /eff($) introduced in paragraph 3C. The function
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Pz(-c) is the Legendre polynomial of order I. The integral (5.14) can be 
expressed in terms of a confluent hypergeometric function XFX with the 
following result (see ref. 10, Vol. 1, p. 171):

The confluent hypergeometric function which appears here can always be 
expressed by means of Fresnel integrals. For I = (),the expression (5.16) 
thus takes the simple form (see ref. 10, Vol. I, p. 266)

i— -

Aoo(™> = (^~iSC2 <5-17)

where C (A) and S(.r) are the Fresnel integrals which are tabulated in refs. 
12 and 13.

The functions A/o for higher values of I are most easily obtained by means 
of recursion formulae. The existence of such relations is guaranteed by the 
theorem that three confluent hypergeometric functions with parameters dif­
fering only by integer numbers are linear dependent. Accordingly, one finds 
the following recursion formula for the functions AI0:

(J+ ■>')(•> I- 1) A/ + 2,o(-% 7) -
(2/-l)(2/+l)(2/ + 3) + 2/ ( ]

4 ZQ
AJ0(%,7)

+ (/ — 1 ) (2 / + 3) Az_2) o (%, 7).
(5.18)

For the application of this formula one needs two consecutive A’s. Instead 
of A2 o it is practical to use the non-physical function A_2 0 which, accord­
ing to (5.16), is a simple exponential function

A_2;0(?r, 7) = (5.19)

The functions AI Q (jt, q) have been computed numerically in this way. 
The result is given in Table 4.

The excitation probabilities in a rotational band with ground state spin 
0 are easily found from these numbers. They are tabulated in Table 5 and 
the result is shown in Fig. 7.
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Table 4.
The functions Aj o(n,q) for backward scattering. The real part, Re AT 0, and the 
imaginary part, Im AI0, are tabulated as functions of the parameter q for spin 

values up to 22.

(to be continued)

q Re ^0,0 Im Ao o Re A2 o Im A2 o Re A4>0 Im A4 o

0.0 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.95625 0.00276 —0.01228 —0.12916 —0.01236 0.00150
1.0 0.83311 0.02081 —0.04427 —0.23461 —0.04567 0.01123
1.5 0.65268 0.06336 —0.08317 —0.29888 —0.08980 0.03372
2.0 0.44537 0.12960 —0.11265 —0.31506 —0.13173 0.06754
2.5 0.24234 0.20825 —0.11852 —0.28773 —0.15978 0.10530
3.0 0.06838 0.28073 —0.09370 —0.23062 —0.16731 0.13599
3.5 —0.06252 0.32687 —0.04075 —0.16163 —0.15447 0.14879
4.0 —0.14819 0.33131 0.02890 —0.09722 —0.12756 0.13695
4.5 —0.19556 0.28834 0.09852 —0.04786 —0.09629 0.10036
5.0 —0.21596 0.20372 0.15132 —0.01611 —0.06998 0.04592
5.5 —0.22000 0.09300 0.17549 —0.00242 —0.05425 —0.01454
6.0 —0.21388 —0.02302 0.16734 —0.01578 —0.04929 —0.06786
6.5 —0.19840 —0.12396 0.13171 0.03154 —0.05024 —0.10350
7.0 —0.17046 —0.19497 0.07968 0.05327 —0.04959 —0.11644
7.5 —0.12642 —0.22953 0.02453 0.07913 —0.04044 —0.10807
8.0 —0.06545 —0.22954 —0.02240 0.10270 —0.01943 —0.08498
8.5 0.00816 —0.20297 —0.05466 0.11574 0.01177 —0.05610
9.0 0.08504 —0.16012 —0.07155 0.11168 0.04694 —0.02948
9.5 0.15274 —0.11018 —0.07677 0.08834 0.07745 —0.00979

10.0 0.19925 —0.05912 —0.07582 0.04909 0.09538 0.00255

It is interesting to compare these curves with the excitation probabilities 
which were obtained for the same situation by means of the diagonalization 
method. It is seen that the excitation curves for the five-state model (see 
Fig. 4) are in good agreement with the exact calculation for % values up to 3. 
It is interesting that also the secondary maxima of the excitation curves are 
present in the calculation with infinitely many levels. These secondary 
maxima which for P2 appear for q = 5.5 and q = 9 must be understood as 
rudiments of the secondary maxima in the calculation with a finite number 
of states. In the two-state calculation the secondary maxima of P2 appear 
at q = 7.5, 12.5, etc. When more states are introduced, these maxima are 
decreased (and shifted) due to the possibility of exciting the higher states 
which are introduced. One must expect that the secondary maxima are 
rather characteristic of the multiple Coulomb excitation of a pure rotational 
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(to be continued)

Table 4 (continued).

? Re a6>0 Im A6>0 Rc Ag0 Im Ag>0 Re A10,0 Im Alo 0

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.00012 0.00087 0.00006 —0.00003
1.0 0.00176 0.00647 0.00074 —0.00020
1.5 0.00813 0.01934 0.00324 —0.00143 —0.00014 —0.00045
2.0 0.02255 0.03862 0.00872 —0.00546 —0.00104 —0.00160
2.5 0.04638 0.06013 0.01724 —0.01443 —0.00352 —0.00400
3.0 0.07751 0.07799 0.02728 —0.03002 —0.00899 —0.00767
3.5 0.11025 0.08694 0.03601 —0.05229 —0.01881 —0.01192
4.0 0.13660 0.08451 0.04021 —0.07890 —0.03361 —0.01518
4.5 0.14878 0.07217 0.03764 —0.10527 —0.05272 —0.01549
5.0 0.14179 0.05491 0.02823 —0.12555 —0.07385 —0.01113
5.5 0.11535 0.03947 0.01454 —0.13437 -0.09335 —0.00157
6.0 0.07426 0.03174 0.00120 —0.12857 —0.10705 0.01195
6.5 0.02704 0.03448 —0.00650 —0.10847 —0.11151 0.02635
7.0 —0.01664 0.04613 —0.00457 —0.07794 —0.10518 0.03733
7.5 —0.04883 0.06126 0.00809 —0.04338 —0.08909 0.04069
8.0 —0.06558 0.07250 0.02898 —0.01177 —0.06674 0.03370
8.5 —0.06765 0.07320 0.05252 0.01150 —0.04311 —0.01632
9.0 —0.05967 0.05992 0.07176 0.02413 —0.02313 —0.00852
9.5 —0.04797 0.03368 0.08053 0.02740 —0.01011 —0.03548

10.0 —0.03808 —0.00022 0.07552 0.02535 —0.00474 —0.05831

band, and sensitive to any deviation. The maxima are also, as we shall see, 
less pronounced for finite £, and the deviation from the q (#) approxima­
tion will also tend to wash out the oscillations.

The deviation from the q (#) approximation can be treated by means of 
the expansion discussed in paragraph 3C. From (3.40), (3.34), (5.4), and 
(5.12) one finds the amplitude aIM to second order in J22($)M2o($)

where a(0) are the amplitudes in the çeff($) approximation.
The formula (5.20) for the special case of = 0 may, according
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(to be continued)

Table 4 (continued).

9 Re A12(o Im A120 Re ^14,0 Im A14>0 Re Ä16,0 Im ^16,0

0.0
0.5
1.0
1.5
2.0 —0.00025 0.00013
2.5 —0.00074 0.00072
3.0 —0.00180 0.00220 0.00040 0.00032
3.5 —0.00330 0.00551 0.00137 0.00079 0.00018 0.00031
4.0 —0.00478 0.01151 0.00331 0.00130 0.00033 —0.00080
4.5 —0.00531 0.02089 0.00691 0.00157 0.00041 —0.00197
5.0 —0.00358 0.03361 0.01263 0.00096 0.00022 —0.00406
5.5 0.00172 0.04865 0.02065 —0.00145 —0.00071 —0.00746
6.0 0.01128 0.06390 0.03052 —0.00667 —0.00305 —0.01228
6.5 0.02462 0.07658 0.04106 —0.01541 —0.00758 —0.01833
7.0 0.03983 0.08387 0.05050 —0.02764 —0.01492 —0.02496
7.5 0.05373 0.08389 0.05682 —0.04231 —0.02530 —0.03100
8.0 0.06255 0.07637 0.05836 —0.05723 —0.03822 —0.03508
8.5 0.06303 0.06298 0.05444 —0.06944 —0.05230 —0.03587
9.0 0.05349 0.04698 0.04574 —0.07585 —0.06541 —0.03266
9.5 0.03460 0.03232 0.03437 —0.07411 —0.07500 —0.02564

10.0 0.00945 0.02241 0.02338 —0.06344 —0.07872 —0.01619

to (5.10), be interpreted as an expansion of the function AT M. The speciali­
zation It = Mt = 0 may thus be done without any loss of generality, since 
the amplitudes for other ground state spins can be computed by means of 
(5.8). Introducing this simplification we obtain

■Lo (*>.  ■?) - «er. (#» - § (îerr (») 4+ D (2 + 1)

(5.21)

(5-22)

3*
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Table 4 (continued).

? Re ^18,0 Im a18,0 Re 4-20,0 Im A20>0 Re A220 Im A22 q

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5 —0.00051 —0.00009
5.0 —0.00114 —0.00004 0.00000 0.00027
5.5 —0.00236 0.00027 0.00009 0.00069
6.0 —0.00429 0.00116 0.00037 0.00133
6.5 —0.00706 0.00312 0.00111 0.00240 0.00071 —0.00034
7.0 —0.01056 0.00672 0.00261 0.00392 0.00130 —0.00090
7.5 —0.01435 0.01248 0.00530 0.00580 0.00209 —0.00199
8.0 —0.01768 0.02072 0.00958 0.00774 0.00301 —0.00389
8.5 —0.01958 0.03125 0.01575 0.00922 0.00384 —0.00692
9.0 —0.01904 0.04330 0.02382 0.00952 0.00420 —0.01133
9.5 —0.01540 0.05540 0.03334 0.00788 0.00354 —0.01718

10.0 -0.00863 0.06564 0.04338 0.00371 0.00128 —0.02423

In the excitation probabilities (see Eq. (5.13)) only the squares of the AT M 
appear and to second order in J22(^)/Ao(^) onty Ar,o and Ar, 2 contribute. 
The seamplitudes have been calculated numerically for /=0,2, and 4 by 
means of the known functions AT 0 (%, </eff (#)). The probability for the ex­
citation of the states in an even-even nucleus can be written

?I ~ ((7eff (^)) + ^J20 (^) ' ^eff ($)) >
(5.24)
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Fig. 7. The multiple Coulomb excitation of a pure rotational band in an even-even nucleus. The 
excitation probability Pi of the state with spin I is given as a function of the parameter q for 
backward scattering. The excitation probabilities for other deflection angles and other ground 

state spins can also be inferred from these curves (see Sect. 5).
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Fig. 8. The coefficients dj for the correction of the excitation probabilities in the çeff (#) approx­
imation. The coefficients z1z (which are defined in Eq. (5.24)) are plotted as functions of <7eff (#) 

for the three lowest states I = 0, 2, and 4 in a rotational band in an even-even nucleus.
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where Pz0) are the probabilities given in Fig. 7. The coefficients zJz receive 
a contribution, partly from Af0 partly from Az 2. The numerical result for 
Az in the cases of I = 0,2, and 4 are given in Table 6 and are illustrated in 
Fig. 8.

It is seen that Az is an oscillating function of 7eff($), and a rough estimate 
shows that the correction may amount to about 0.1, but usually it will be 
much smaller. If one compares the curves for Az and Pz, one sees that the 
tendency of the correction is to fill out the minima of Pz. The relative error 
at the minima of Pz might be rather considerable, as is shown on Fig. 9. 
The relative error in P2 is here plotted as a function of geff($) f°r different 
angles. The curves end at the value of </eff($) where q reaches the value 10. 
'fhe maxima on the curves appear as expected at the points where P2(0) is 
minimal.

One sees also that for small angles the relative error is rather considerable 
in the whole range of q. This discrepancy can, as was discussed in para­
graph 3C, be removed by applying q (#) defined by

q (0) = q j[(Ao(W2+3(A2(^))2]''- (5.25)

instead of qeft(#)- This approximation will lead to the correct result for angles 
where the perturbation calculation is applicable. In Fig. 10 we have plotted 
the relative error of this latter approximation. It is seen that for q (#) less 
than 2 one obtains a considerable improvement over the qeff($) approxima­
tion (compare Fig. 9). For q (#) larger than 2, the error is mostly larger than 
the error of the qeff($) approximation, but it is here not very different from 
this. As a net result the q (#) approximation is preferable.

In the case of a pure rotational band, one may calculate the excitation 
amplitude for arbitrary angles directly from (5.8). This can be done in the 
following way. We write the exponent in (5.9) explicitly in the form

= g

A*
| J2o WO - 3 cos2 ß) +1J22 (#)sin2ßcos2 a

(5.26)

For the spherical harmonics we use the definition

YIM(ß, a) = (-l)M
(2 7+ 1)(7-M)1

4 % (7 + M) !
(cos ß) elMx. (5-27)
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The integration over a may then be expressed by means of a Bessel function 
JM/z °f order Af/2 with the following result(10);

M
^im ($> q)= z2 (Z + M)1J

x( dxP™(x)JM
*0 9

(5.28)

This formula applies to / and A/ even. For I or 3/ odd, Aj M vanishes. One 
observes furthermore the symmetry relation

(^’ Q)  Af, M (&, q). (5.29)

One may then proceed by using the following integral representation of the
Bessel function (sec ref. 10, Vol. II, p. 81)

(5.30)

Fig. 9. The relative error of the </eff (A) approximation for the excitation of the 2+ rotational 
state in an even-even nucleus. The error [P2 ($, Q)-P-2 (n, ?eff (#)]/P9 (n, <?eff ($)) is plotted as 
a function of çeff (#) for different angles. The curves end at a value of geff ({}) where q reaches 

the value 10.

Fig. 10. The relative error of the q (#) approximation for the excitation of the 2+ rotational 
state in an even-even nucleus. The error [P9 (#,<?)-P., (tt, ç (#))]/P2 (T, <? (#)) is plotted as a 
function of q(&) for different angles. The curves end at a value of q(&) where q reaches the 

value 10.
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The integration over x can be done by expanding the exponential function 
in power series in q [J2,o ($)+ ^2,2 (^)J (see ref- 10, Vol. I, p. 172). The 
integration over t can finally be done when the powers of this quantity are 
expanded according to the binomial formula. The result is a double series

where

(5.31)

J 22 (#)
2 J20 (#) ‘

(5.32)

We have furthermore used the notation

am = oc (a + 1 ) . . . . (a + m - 1 ). (5.33)

The formula (5.31) holds for M > 0. The functions Aj M for negative M are 
determined by means of (5.29).

It is useful to perform the summation over M whereby (5.31) may be 
written in the form

1 2
a-M)ij

2m + 17

2

d2n

X(dqett(Wn

i_ M__ ,
x (-<2 ,7/eff W)2 (“/?)2 >

I-M
-n (<ze«W) 2 ifi

 (5.34)

If one sets 5 = 0 the expressions (5.31) and (5.34) reduce to the simple re­
sult (5.16). The expression (5.34) is, similar to (5.20), a systematic expansion 
in powers of T22(i9)/Jr20(i?).
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B. First Order Correction in £

In paragraph 3 A it was outlined how one may calculate the deviation 
of the excitation amplitudes from the sudden approximation. The result was 
expressed in a power series in the £’s which enter into the excitation process. 
For rotational bands, one may define a common £ in terms of the moment 
of inertia in a similar way as, for such spectra, we defined a common / 
in terms of the intrinsic quadrupole moment. We shall use the notation

(5.35)

where 3 is the moment of inertia entering in (5.3). The quantity (5.35) is 
identical to the £ corresponding to the excitation of the lowest rotational 
state in an even-even nucleus.

The excitation amplitudes which were evaluated in the previous para­
graph are essentially complex numbers. The first order corrections must 
also be expected to be complex, and it follows therefore that the excitation 
probabilities have linear terms in £. This is in contrast to the first order 
perturbation theory which is independent of £ to first order in this quantity.

To first order, the excitation amplitude an may be written in the form

an = a(0) + n(1) (5.36)

where is the amplitude (5.7) in the sudden approximation. The first 
order correction is, according to (3.20), given by

In this equation, H'(f) is given by (5.5) and (5.11)

H, (() _ (/) (/? (5.38)

while Hq (sec Eq. (5.3)) has been expressed by means of £ and the angular 
momentum operator L through

(5.39)
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For the evaluation of (5.37) we shall proceed in the following way: Firstly, 
the differentiations of the operator L2 are performed. Hereby the two exponen­
tial functions in | > will cancel. The expression for | > will then be
suitable for an expansion in terms of the eigenfunctions | m) of Ho, and 
the problem is reduced to the already performed calculation of matrix ele­
ments in the sudden approximation.

The result of the first step in this program can be written in the form

\(Pi> = ffi Y2ft (ß> a) I 0 >

8ti (dY*  d 1 dY*d\
- - l°>la ~ \ dß dß sin2/? doc doc/

.61«« 1 dY^ dY^A
+ l ^5 dß + sin2ß doc doc ' |0>,

(5.40)

where the coefficients and are defined by

and

From the symmetries of the (see Eq. (3.23)) one sees immediately
that f\_ = is the only non-vanishing f . The first two terms of (5.40) also 
appear in the first order perturbation treatment while the third, which is 
proportional to g2, is characteristic of higher order excitations. The second 
term arises from the initial motion of the rotator, and it disappears for the 
ground-state spin 1 = 0.

For the evaluation of (5.40) one has to use the properties of the eigen­
functions I 0 > which are given in terms of the fl-function in (5.6). We 
note the following formula

ïdD1 dD1' 1 d l)1 di)1' 
dß dß + sin2 ß doc doc

= Dj L2 + D1 L2 (D1) - L2 (I)1 D1'}

= (Z(/+1)+ /'(/' +1)-L2) D1 D1',

(5.43)



44 Nr. 8

where we have suppressed the lower indices M and K on the I) functions. 
By means of this formula the problem of expanding | <yL > in terms of | n? > 
is reduced to the problem of expanding a product of I) functions in terms 
of D functions.

The result can be expressed by means of the functions AIM defined in 
(5.9) in the following way:

r
^IM (ft’X

r
(ft’ Q)X

2 A n - h 
/z — mJ \o k - kI Mf .

q~ 11
+ q2s (-ir <■> it+iÿ c>if+v)‘(•>/+}) c>i'+1)

II'Mlm

/ / A I'

M \-KKH

r,(1) =
"// Mi

(5.44)

We have here introduced the notation

ÄW-(2/+l)(^ J [12-/(?+!)] 5/r 2, ' )V (5.45)

\° 0 °/ — V i“ nV

for the tensors of rank 0,2, and 4 which can be built up of the fn^', given by 
(5.42).

The coefficients /^($) and /^(#) which are necessary for the evaluation 
of a(1) have been computed for a few angles and the result is given in 
Table 7. We note the following property of the flm functions:

fl-m(ft> = flm(ft\ (5-46)

The flm functions for odd values of in may be expressed by means of 
and the functions T2 „(^) defined by (3.27):

+ (5.47)
28 \7t

fl W - - '■ ~/,7= fl [2 Ao W - A2 WJ (5.48)
7 J/2%

AA2W- (5.49)
J/ 1 4 71
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5 io q

Fig. 11. The first order correction in £ for the excitation of a rotational band in an even-even 
nucleus. The curves show the excitation probabilities of the states of spin 2 (P2) and of spin 
4 (P4) and the probability that the nucleus stays in its ground state (Po). The probabilities are 

given as functions of q for backward scattering and for the cases £ = 0 and £ = 0.05.
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For backward scattering the only non-vanishing /-functions are /‘q , fl, 
and /q. This is a consequence of the fact that all and f , of Eqs. (5.41) 
and (5.42) vanish, except /’00.

We shall here illustrate the first order correction in £ by considering the 
special case of backward scattering on an even-even nucleus. In this case, 
the only non-vanishing amplitude a(1) is

Q2 £ (2 If+ 1 )2 (^) A (2 1 +1 )

(5.50)

We have here used that fl (%) = 5/7 fl (jt) and fl (ti) =-12/7 fl(ri) which 
follows from the definition (5.45). The excitation probabilities to first order 
in £ may be written in the form

(zt, q) = PT (£ = 0) +Aj (q)£. (5.51)

The coefficient /lz (7) has been evaluated numerically and is given in Table 
8. It is seen that AT is an oscillating function of q which is of the order of 
magnitude 1. The corrections for £#0 are thus not dominated by the factor 
q2 in (5.50). The oscillations in AT follow the oscillations of Pz (£ = 0) in 
such a way that the first maximum of Pz is cut down, while the excitation 
probability for larger values of q is increased. This increment is largest at 
the minima of Pz and the effect of £#0 is thus essentially to smooth out the 
whole excitation curve. This is clearly seen on Fig. 11 where the excitation 
probabilities for I = 0, 2, and 4 and £ = 0.05 are compared with the exci­
tation probabilities for £ = 0.

For other deflection angles one may use the qell (0) approximation. One 
must here substitute only the q in AZ0(7t, 7) with 7eff(#). Furthermore, the 
fl (%) should be replaced by /q (#). As was discussed earlier, this approxi­
mation is much less accurate here than in the sudden approximation. An 
indication of the accuracy can be obtained by comparing the limiting case 
of (5.50) for 7(0 with the second order perturbation calculation per­
formed in ref. 14. This comparison shows that the approximation should 
not be applied for angles less than 90 degrees.

The failure of the qeii (#) approximation for £#0 is due to the fact that 
the relative importance of the different coefficients flm(JP) in (5.44) for angles 
smaller than 90 degrees is completely different from the relative importance 
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in the neighbourhood of 180 degrees where only f00 is different from zero. 
This means that one has to take into account also the amplitudes on the 
states with magnetic quantum number M#0.

For £?^0, one observes from (5.44) that also the states with magnetic 
quantum numbers which differ by an odd integer from the magnetic quan­
tum number of the ground state are populated. The amplitude on these 
states will be proportional to £ f± ($) and the excitation probability will thus 
only receive a contribution of the order £2 from such terms.

C. Numerical Results

In this paragraph we shall collect the numerical results which have been 
obtained for the excitation of rotational states together with some formulae 
which facilitate the application of these results to the experiments.

It is thus convenient to write the important parameters directly as func­
tions of the energy of the incident projectile in the laboratory system (see 
ref. 1, Chapter II C). We shall here quote the expression forhall the distance 
of closest approach in a head-on collision

a = 0.07199(1 +—^ J xl0"12cm. (5.52)
\ -^2/ -E'MeV

Here, Ax, and A2,Z2 are the mass numbers and charges of projectile and 
target nucleus, respectively. The quantity EMeV is the bombarding energy 
expressed in MeV.

The parameter £ is similarly given by

1

t ^1Z2 Ax A FMeV
/ 1

12.65 ( -Ejtev - - A -KjMeV

where A E' is connected with the energy difference E2- Er by the relation

An expression for the parameter / (in the case Â = 2) is found by insert­
ing (5.52) in (2.11), i. e.,

(5.54)

3/2 ’
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14.52
4 [B (£2,Z1->Z2)]1/2

(1 +a1/a2)2z1zI
(5.55)

The reduced transition probability B (E 2) is here measured in units of 
e2- IO-48 cm4.

For the excitation of rotational states we have introduced two parameters 
which are related to /1_>2 and ^i->2 an(^ are defined in terms of the nuclear 
moments, so that they arc independent of the spin sequence in the rotational 
bands. We have thus (see Eq. (5.35)) defined a common £ in terms of the 
moment of inertia 3 by means of (5.53) where

(5.56)

For an even-even nucleus this £ is identical with the £^2 f°r the excitation 
of the lowest rotational state.

We have furthermore defined a quantity q by means of the intrinsic 
quadrupole moment Qo in the following way (see Eq. (5.11)): 

q = 7.6241
(1

(5.57)

where Qo is measured in units of e-10 24 cm2. The quantity q is related to 
the % for the excitation of the lowest state in an even-even nucleus by Eq. 
(5.12).

The differential Coulomb excitation cross section is given by (3.43) 
through the excitation probability PT T. (0, q, £) which is the probability 
that the nucleus is excited from the ground state with spin It into the state 
with spin when the projectile moves in an orbit with deflection angle 0 
in the center of mass system.

The probabilities P as well as other quantities interesting for the experi­
ments can be obtained from the excitation amplitudes (see Eq. (3.42)). For 
£« 1 the amplitudes aT M (0, q, £) are easily obtainable from the func­
tions AIM (0, q) (see Eq. (5.8)). These functions can in turn be expressed 
by the functions AI0 (n, q) which are related to the amplitudes for the exci­
tation of rotational states in an even-even nucleus for # = % and £ = 0 by 
means of (5.10). These fundamental quantities have been calculated accord­
ing to the formulae given in paragraph 5 A, and the result is given in 
Table 4.
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For other deflection angles, the functions AIM (ft, q) can be obtained 
to a good approximation from those tabulated by means of Eqs. (5.21) to 
(5.23) which we shall quote here for the cases M = 0 and A7 = ±2:

4(7+l)(Z+2) [(7+1) (Z+2) - 4]
(2 7 - 1) (2 7 + 1) (2 Z + 3) (2 7 + 7) 7 4 2’°( ’ Qeii) 

(Z+l)(Z + 2)(Z + 3)(Z + 4)
(2 7 + 1) (2 7 + 3) (2 7+ 5) (2 7 + 7) 74 4'°( ’ QeffJ

*7eff)

and
ai.±2~ 'îe>l K7“1) Z(/ + 0(/+ 2)1 ](2/- 1) (2/+ l)+_2’"<+

"(2 7-7^(277 3) g",) + (2 / + 1)0773) A; + 2'° (JI' ’e,,)r

In these equations, geff (#) is given by (5.15). The ratio qeii (ft)/q is shown 
in Table 2 where also the ratio J22 (#)/J20 ($) ^as been tabulated.

The excitation amplitudes for arbitrary spin sequence in the rotational 
band is given by Eq. (5.8). The first order correction in the amplitude for 
£ # 0 is expressed by means of the M (17, g) in Eq. (5.44). We shall in 
this paragraph only consider the application of M (ft, q) for the evalua­
tion of the excitation probability Pz z. (ft, q, £).

In the simplest case of the excitation of a rotational band in an even­
even nucleus for £ = 0 and ft = ji, the excitation probabilities Pz (g) = 
Pj 0(ti, q, 0) are given by

P/(</)-(2 7+l)l+.oO.'/)l2- (5-60)

These probabilities have been evaluated in Table 5, and they are plotted 
in Fig. 7.

For other deflection angles the probability can be obtained from (5.58) 
and (5.59). To second order in J22 (#)/«72o (^) maY be written

p,.0(»■ q. 0) - O(<?,«W) + (’’+• <5-61)

(5.58)

(5.59)

Mat. Fys. Medd. Dan.Vid. Selsk. 32, no. 8. 4



50 Nr. 8

(to be continued)

Table 5.
The probabilities for excitation of the rotational states in an even-even nucleus. 
The result which is given for backward scattering and £ = 0 is tabulated as a func­
tion of q and of the spin of the excited state. The excitation probability for other 

deflection angles and other spins can easily be inferred from these numbers.

Q ^0 F2 ^6 ^8 7To 7T2

0.0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.9144 0.0842 0.0014
1.0 0.6945 0.2850 0.0199 0.0006
1.5 0.4300 0.4812 0.0828 0.0057 0.0002
2.0 0.2152 0.5597 0.1972 0.0260 0.0018 0.0001
2.5 0.1021 0.4842 0.3296 0.0750 0.0086 0.0006
3.0 0.0835 0.3098 0.4184 0.1572 0.0280 0.0029 0.0002
3.5 0.1108 0.1389 0.4140 0.2563 0.0685 0.0104 0.0010
4.0 0.1317 0.0514 0.3152 0.3354 0.1333 0.0286 0.0039
4.5 0.1214 0.0600 0.1741 0.3555 0.2125 0.0634 0.0116
5.0 0.0881 0.1158 0.0630 0.3006 0.2815 0.1171 0.0285
5.5 0.0571 0.1540 0.0284 0.1932 0.3105 0.1831 0.0593
6.0 0.0463 0.1412 0.0633 0.0848 0.2810 0.2436 0.1053
6.5 0.0547 0.0917 0.1191 0.0250 0.2007 0.2757 0.1618
7.0 0.0671 0.0459 0.1442 0.0312 0.1036 0.2616 0.2155
7.5 0.0687 0.0343 0.1198 0.0798 0.0331 0.2014 0.2481
8.0 0.0570 0.0552 0.0684 0.1242 0.0166 0.1174 0.2436
8.5 0.0413 0.0819 0.0296 0.1292 0.0491 0.0446 0.1985
9.0 0.0329 0.0879 0.0276 0.0930 0.0974 0.0128 0.1267
9.5 0.0355 0.0685 0.0549 0.0447 0.1230 0.0286 0.0560

10.0 0.0432 0.0408 0.0819 0.0189 0.1079 0.0719 0.0148

The coefficient z4z(#) lias been evaluated numerically for / = 0,2, and 4 and 
the result is given in Table 6 and Fig. 8.

In many cases a simpler approximation for 0 (??, y, 0) will be quite 
adequate, namely the q approximation. In this approximation the exci­
tation probability is given by

P/>o(0,</.O)~P, (</(£)), (5.62)

where the quantity g (#) is defined by (5.25). The ratio q (JF) / q is given in 
Table 2. The accuracy of the approximation (5.62) is illustrated in Fig. 10.

As an illustration of the application of (5.62) the differential and total 
cross sections have been evaluated for the case q = 3, and the result is given 
in Fig. 12. While the cross sections for all higher states tend towards zero 
for small deflection angles, the excitation of the 1=2 state reaches a finite
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Table 5 (continued).

q ^14 *16 *18 *20 P22 *24 *26

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.0000
1.0 0.0000
1.5 0.0000
2.0 0.0000
2.5 0.0000
3.0 0.0000
3.5 0.0001
4.0 0.0004
4.5 0.0014 0.0001
5.0 0.0046 0.0007
5.5 0.0124 0.0018 0.0002
6.0 0.0283 0.0053 0.0007 0.0001
6.5 0.0558 0.0130 0.0022 0.0003
7.0 0.0961 0.0279 0.0058 0.0009 0.0001
7.5 0.1455 0.0529 0.0134 0.0025 0.0004
8.0 0.1938 0.0888 0.0274 0.0062 0.0011 0.0002
8.5 0.2258 0.1327 0.0503 0.0136 0.0028 0.0004 0.0001
9.0 0.2275 0.1764 0.0828 0.0270 0.0066 0.0013 0.0002
9.5 0.1935 0.2073 0.1223 0.0481 0.0138 0.0031 0.0005

10.0 0.1326 0.2132 0.1622 0.0777 0.0265 0.0069 0.0014

Table 6.
The coefficient (ç) for the correction of the çeff($) approximation (see Eq. (5.61)), 
in the case of a rotational band in an even-even nucleus for £ = 0. The result is given 

for the states of spin I = 0, 2, and 4 as a function of q.

q do ^2 d4 q do d2 d4

0.0 0.000 0.000 0.000 5.5 —3.756 1.178 2.844
0.5 —0.247 0.239 0.008 6.0 —3.960 1.387 1.766
1.0 —0.787 0.678 0.103 6.5 —4.841 3.078 —0.349
1.5 —1.225 0.821 0.347 7.0 —5.993 5.048 —1.746
2.0 —1.381 0.585 0.561 7.5 —6.712 5.700 —1.046
2.5 —1.477 0.490 0.404 8.0 —6.654 4.538 1.409
3.0 —1.887 1.120 —0.206 8.5 —6.195 2.733 3.639
3.5 —2.712 2.390 —0.796 9.0 —6.120 2.156 3.664
4.0 —3.608 3.441 —0.610 9.5 —6.898 3.655 1.329
4.5 —4.084 3.787 0.630 10.0 —8.213 6.188 —1.379
5.0 —4.000 2.263 2.214

4*
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F’ig. 12. The differential cross sections for multiple Coulomb excitation of a rotational band in 
an even-even nucleus for q = 3. The curves show the cross sections da^dQ for the excitation of 
the state with spin 1 in the sudden approximation in units of a2. The curve for the first excited 

state has been scaled down by a factor 10.

value for ?9 = 0°. This is seen from 
valid in this region. One thus finds

the perturbation expression which is

! do2\
(5.63)

From the differential cross sections the 
cross sections have been obtained

following values for the total

<tz = 2 = 7.93 a2 

= = 1.06 a2

<t7 = 6 = 0.160 o2

= 8 = 0.016 a2.

(5.64)

For other ground state spins the excitation probabilities of the rotational 
band can be obtained by means of (5.13). Since K = 7) this equation may be 
written

(.0. «. 0) " (2 I, + I J q, 0)

 (2^+1)! (2/,)! (/, + /,)! \ +
(/,-A)! y-- (/, + // + /+!)! (A-^ + Z)! (/,+//-/)!

As an illustration, the case of I- 5/2 is shown in Fig. 13 for & = 180°.
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Fig. 13. The multiple Coulomb excitation of a pure rotational band in an odd A nucleus with 
ground state spin 5/2. The excitation probability Pi of the state with spin 1 is given as a function 

of the parameter q for backwardjscattering.

Table 7.
The coefficients (#) and for the first order corrections in £ to the excitation 
of rotational states (see Eq. (5.44)). The coefficients arc given as functions of the 
deflection angle & (in degrees) for even values of m. For odd values of m the f'm (#) 
are easily obtained from (#) and the functions given in Table 2 by means
of the Eqs. (5.47) to (5.49). The entries are given in the form of a number followed 

by the power of ten by which it should be multiplied.

0 A /o° f210 /•2

180 0.000 3.893 (—1) 2.781 (—1) 0.000
150 1.917 (—1) 3.423 (—1) 2.423 (—1) 9.405 (—3)
120 3.242 (—1) 2.188 (—1) 1.495 (—1) 2.672 (—2)
90 3.586 (-1) 9.615 (—2) 5.915 (—2) 3.181 (—2)
60 2.904 (—1) 2.370 (—2) 9.662 (—3) 1.920 (—2)
30 1.513 (—1) 1.442 (—3) —1.047 (—3) 4.078 (—3)

0 fo /2 n
180 —6.673 (—1) 0.000 0.000
150 —5.935 (—1) 1.015 (—3) —4.062 (—5)
120 —3.942 (—1) 4.773 (-3) —4.713 (—4)
90 —1.880 (—1) 8.893 (—3) —1.373 (—3)
60 —5.511 (—2) 8.255 (—3) —1.654 (—3)
30 —5.787 (—3) 2.628 (—3) —6.296 (—4)
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Table 8.
The coefficients A, (ç) for the first order correction in £ to the excitation proba­
bility of even-even nuclei. The coefficient which is defined in Eq. (5.51) is given for 
backward scattering on even-even nuclei. An approximate expression for other de­

flection angles can be obtained from the table by means of Eq. (5.67).

? d 0 ^2 d4 dß dß dio

0.0 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.030 —0.029 —0.001
1.0 0.204 —0.186 —0.017
1.5 0.537 —0.422 —0.106 —0.008
2.0 0.890 —0.512 —0.325 —0.050 -0.004
2.5 1.084 —0.250 —0.636 —0.175 —0.022 —0.002
3.0 1.044 0.337 —0.861 —0.427 —0.083 —0.009
3.5 0.861 0.963 —0.773 —0.775 —0.234 —0.038
4.0 0.714 1.282 —0.278 —1.073 —0.509 —0.117
4.5 0.728 1.159 0.451 —1.107 —0.880 —0.288
5.0 0.880 0.783 1.053 —0.735 —1.224 —0.578
5.5 1.033 0.510 1.216 —0.025 —1.344 —0.966
6.0 1.061 0.580 0.919 0.721 —1.080 —1.341
6.5 0.955 0.930 0.465 1.136 —0.433 —1.526
7.0 0.821 1.266 0.249 1.039 0.370 —1.351
7.5 0.780 1.321 0.456 0.579 0.969 —0.779
8.0 0.865 1.082 0.922 0.148 1.087 0.031
8.5 0.995 0.785 1.278 0.099 0.728 0.751
9.0 1.055 0.701 1.259 0.480 0.199 1.063
9.5 0.996 0.901 0.920 1.006 0.089 0.855

10.0 0.880 1.204 0.580 1.282 —0.094 0.322
(to be continued)

The first order corrections for £^0 must be calculated by means of Eq. 
(5.44) from the quantities (#, q) and from the functions and
f\ (fr). The latter have been evaluated numerically for some angles and the 
result is given in Table 7.

The excitation probability may be written in the form (5.51)

pifii(#> q> 0 ~ pifiiq> °) + Aifii(#> q) (5.66)

file functions A have been calculated for the special case of i) = tc and 
= 0, and the result is given in Table 8. The effect of the correction in the 

excitation probability is illustrated in Fig. 11. The result (5.66) may be 
applied for angles in the neighbourhood of 180 degrees by the following 
substitution :
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Table 8 (continued).

Q dl2 ^14 ■“416 00 ^20

0.0 0.000 0.000 0.000 0.000 0.000
0.5
1.0
1.5
2.0
2.5
3.0 —0.001
3.5 —0.004
4.0 —0.017 —0.001
4.5 —0.055 —0.007
5.0 —0.149 —0.025 —0.003
5.5 —0.336 —0.073 —0.016
6.0 —0.640 —0.180 —0.034 —0.005
6.5 —1.038 —0.380 —0.092 —0.016 —0.001
7.0 —1.436 —0.694 —0.210 —0.044 —0.007
7.5 —1.669 —1.101 —0.421 —0.110 —0.021
8.0 —1.571 —1.516 —0.744 —0.238 —0.055
8.5 —1.072 —1.788 —1.163 —0.459 —0.128
9.0 —0.284 —1.753 —1.586 —0.789 —0.266
9.5 0.511 —1.324 —1.888 —1.210 —0.495

10.0 0.981 —0.571 —1.907 —1.648 —0.832

g2 / o (^)
Aifo (&> ?) ~ z - z »XX2 fo ÄZÄ A/fo(^ 9eff (#))• (5.67)

(7eff(w)) tov71)

This equation only holds as long as f®, and fl dominate over the coeffi­
cients f|, f2, and f%.

The collision between the target nucleus and the projectile may also lead 
to an excitation of the projectile. The results which we have obtained for 
target excitation can also be used for projectile excitations, since we have 
worked in a relative coordinate system. The parameter £ (see Eq. (2.8)) is 
thus given by the Eqs. (5.53) and (5.54) where one must insert for E2-EY 
the excitation energy of the projectile. Similarly the expression for / (see 
Eq. (2.11)) is given by 

z?™1, - 14.52
Aj'2[B(g2,71^/2)]1/2 

(1 + A1/A2)2 Z2 Z2
(5.68)

where B(/i2) now refers to the projectile. The formula for gproj has the same 
relation to q in (5.57) as /pr0J lias to / in (5.55).
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D. Classical Treatment
We shall make a few comments about the classical limit of the excita­

tion of rotational states, which can be used for large angular momenta and 
large q. The classical problem of a collision between a charged particle and 
a charged symmetric lop leads to a non-linear equation of motion which, 
like in the quantum mechanical problem, can only be solved in closed form 
in the limit where the collision time is short compared to the time of rotation 
of the top.

The classical Hamiltonian can be written in the form

(5.69)

where pß and px are the momenta which are conjugate to the Eulerian angles 
ß and a, describing the orientation of the axis of the top.

We shall here consider only the case where one may neglect the terms 
with /t # 0, i.e., we limit ourselves to the case of backward scattering or the 
q (#) approximation. In this case the angle a is a cyclic variable. For the 
angle ß one obtains from (5.69) the following equation of motion:

/Ï - t'j1 Ç^aP2S20(0sin 2/Î. (5.70)

In the sudden approximation one assumes ß on the right-hand side to 
be unchanged (equal to /?0) during the collision, and the final angular velo­
city ßf is thus given by

= Ä + ^sin2^o- (5.71)

We have here used Eqs. (5.15), (3.24), and (3.27), and have denoted the 
angular velocity ß before the collision by ßt.

From (5.71) we obtain the following simple expression for the transfer 
of angular momentum dL± perpendicular to the symmetry axis of the orbit.

= 2 geff (#)fisin 2/30, (5.72)

while the component of L parallel to the axis is unchanged.
In the classical treatment one thus finds that the angular momentum 

transfer depends on the initial orientation of the lop and one sees that the 
projectile can transfer at most (for ßi = rc/4) an angular momentum of mag­
nitude

= 2 7eff (5.73)



Nr. 8 57

If one considers all initial orientations of the top to be equal probable, one 
may evaluate the classical energy distribution of the top after the collision. In 
the simplest case where the nucleus is at rest before the collision, one finds 
corresponding to (5.73) also a maximum energy transfer Emax = 2 (qeff (#))2/ï2/3- 
In this case, the energy distribution can be written in the form

where

P (E) dE = de
4 j/fi |/1 - \/~e ’

E
8 =------

^max 2 (<7eff (W 1

(5-74)

(5.75)

This energy distribution (5.74) is illustrated in Fig. 14.
The classical treatment gives a qualitative understanding of the result of 

the quantum mechanical calculations of Fig. 7. In the classical limit, the 
excitation probability of a state of spin I is zero until q reaches the value 7/2. 
As a function of q the excitation probability thereafter goes through a maxi­
mum and finally decreases slowly. The quantum mechanical energy distri­
bution is a function of both q and the discrete excitation energies. For a 
fixed value of q the points corresponding to the different energies oscillate 
around the classical curve. On Fig. 14 we have illustrated the case of q = 
10, and we have here, for illustrative purposes, connected the points 
(indicated by circles) by a smooth curve. It is seen that the result is still 
far from the classical limit.

Like in the quantum mechanical treatment, the case of £#0 can be solved 
for small values of £. One must then take into account that the nucleus is 
moving during the collision time. In first order one may consider the change 
in the right-hand side of (5.70) to be linear in ß. One is thereby led to a 
hypergeometric differential equation which can be solved explicitly.

The result for the angular momentum transfer perpendicular to the z 
axis can be written in the form

= 2 çeff (#) sin 2ß0F(q^cos2ß0), (5.76)

where the correction factor F to the result for £ = 0 is given by

F(x-)
4 tix (2 x — 1 )

for x « 1.

Mat.Fys.Medd. Dan.Vid.Selsk. 82, no. 8.

(5-77)

5
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Fig. 14. The classical energy distribution of a charged symmetric top after a head-on impact of 
a charged particle (full drawn curve). The top is assumed to be at rest before the collision and 
the impact is assumed to be sudden. The scale of the abscissa is the ratio between the energy 
of the top E and the maximum energy Emax which can be transferred. The circles, which are 
connected by a broken curve, show the corresponding quantum mechanical result for q = 10.

It is illustrative to evaluate the average excitation energy of the nucleus 
after the collision. If we assume an isotropic distribution for the orientation
of the nucleus before the collision, we find from (5.76) to first order in £
(and backward scattering)

16 g2 fi2
15 1" (5.78)

This result must be correct also in the quantum mechanical treatment. In 
the limit of q « 1 where only the lowest state in a rotational band in even­
even nuclei is excited, one may use it to calculate the excitation probability. 
Since the energy of the state of spin 2 is E2 = 3 7/2/3, one finds

(5.79)

If one compares this result with the result (5.51 ) in the limit of g«l, one finds

/oO) = =poO) = (5-80)

in agreement with Table 7.
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6. Excitation of Vibrational States

Another important kind of collective excitations in nuclei is that con­
nected with the vibrational degree of freedom. In even-even nuclei a number 
of low-lying states have been identified as vibrational levels but, in general, 
the spectra are not as well understood as the corresponding rotational sta­
tes in deformed nuclei. A survey of the experimental and theoretical status 
is given in ref. 1, Chapt. VC.

The excitation of pure vibrational states can be solved exactly not only 
in the sudden approximation, but also for arbitrary ft, I-, and /. The problem 
is analogous to the classical problem of a forced vibration which can also 
be solved in an explicit form.

For a pure quadrupole vibration, the Hamiltonian of the free nucleus is 
given by

Ho-|bZIM24cAI“2mI2’ <6-0
“ /z z /.z

where B is the inertial parameter and C the restoring force. The parameters 
a2,/z> where /z = —2,—1, 0, 1, 2 describe the shape of the nuclear surface. 
In the idealized case where the surface is sharply defined and where the 
nuclear density is constant, the nuclear shape is given by

«(<>,<?)- _R„ [ I <?')]■ (6.2)
L z*  J

The eigenstates of the Hamiltonian (6.1) can be classified according to 
the five vibrational quantum numbers nfl, where = 0, 1,2.... The en­
ergy of a state | n^)> can thus be written in the form

Here, the frequency co is given by

while the principal quantum number N is defined by

F

The degenerate nuclear states can also be labelled by this principal 
quantum number together with the total angular momentum I and the mag- 

5*  

(6.3)

(6.4)

(6.5)
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h
(6.6)

instead of

(6.7)

(6.8)

defined by

(6-9)

(6.10)

(6.11)

(6.12)

where S2/l (f) is given by (3.23).

ground 
for the

where the momenta are

Wo =

we may write Ho in the form

and one may therefore write the interaction Hamiltonian (2.3) in the 
ing form :

The nuclear multipole moments äR (E 2, /<) are related to the deformation 
parameters a2>jU by the following expression (see ref. 1, Eq. (V. 24)),

netic quantum number Jf. For N < 3 these numbers are sufficient to specify 
the state completely, while for N > 3 one needs additional quantum num- 
bers(17\ The connection between the two labellings and N, I, M is given 
in refs. 15

In the
coordinate

a2>/<- If we introduce furthermore £ by means of the equation

t n
Ç = co —

V

B/ — X/ Q ^/lB ^-2/1

and 16 for a number of cases.
following, it will be convenient to introduce a dimensionless 
x^ defined by the equation

H'(0 =
I J H

By evaluating the reduced matrix element of (6.10) between the 
state and the first excited state one finds the following expression 
parameter / (see Eq. (2.12)):

Z2 e2 Rq

(E 2, /<) = ^Z1e R2o oc2fl
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The eigenstates of the free Hamiltonian Wo are given in terms of the 
Hermite polynomials Hn (x), i.e.,

(6.13)

The excitation amplitude in the sudden approximation (3.11) is now very 
easily found.

The result for the distribution on the different energy levels (AT) turns out 
to be a Poisson distribution, where the mean excitation energy is the same 
as that one would find in the perturbation calculation (see Eq. (6.27) below). 
This result can be understood by noting that the excitation of an harmonic 
oscillator can always be interpreted as the collective motion of a large num­
ber of mutually uncoupled harmonic oscillators which are, each of them, 
only weakly excited. The weak excitation of these oscillators can be treated 
by a perturbation calculation and, since they are mutually uncoupled, the 
resulting total energy distribution must be a Poisson distribution.

Since the above argument is independent of the sudden approximation, 
we shall in the following give the details of the calculation in the more gene­
ral case of £+0.

The first step in the program will be to introduce a number of auxiliary 
variables x(l), where i = 1,2, 21 and where x^ = x^. The 5 (2Ï — 1) 
new degrees of freedom are supposed to be coordinates for free vibrations 
which have the same frequency co as the x^ oscillators. Furthermore, we 
take them to be coupled, neither to each other nor to the old xjX. Under 
these circumstances they will be left undisturbed in the Coulomb excitation 
process and will only change the problem in a trivial way. The total Hamil­
tonian will thus be

/A i

while the eigenstates which arc of physical interest will be

(6.14)

O) = W2> no n2 G^) ]~[ ^0 (6.15)

i + 1
where is the ground state wave function (6.13) with = 0.
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We perform now a linear transformation on the coordinates and in­
troduce hereby new coordinates Qjf and new momenta PfiK The transfor­
mation matrix U is supposed to be unitary, i. e.

UU^ = 1 (6.16)

and is assumed to be diagonal in y, i.e.,

(6.17)

Furthermore, we prescribe the first row of for all values of y to be given
by

(6.18)

The new Hamiltonian in the variables Qjp and P^ is found from (6.14) 
(6.16), and (6.18) to be

H [ I I2 + I 0? I2] + 1/^fiy«2 Æ2W0 2Q?- (6 ’9)
2 a /h I 5 J/yc y i

The Schrödinger equation for the variables is again separable and 
the eigenstates of the free Hamiltonian are

<Pn (Q) = Tl (Q?) > (6.20)
i/.i

where all can take the values nfî = 0, 1, 2z*  z*
In the new Hamiltonian, however, the interaction term can be made 

very small for all values of y and i by choosing 91 to be a large number. 
In the new variables, the excitation process can therefore be treated by a 
perturbation calculation, and one obtains for each of the oscillators (ji,j) 
only a very small probability that the oscillator is excited. In the perturbation 
treatment one finds, for each oscillator the following excitation amplitude 
on the first excited state:

f* 00___
.‘-<1 (6.21)

Since the matrix element of between the states of one phonon | 1 > 
and the ground state | 0 > is given by
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(-1>“<l|Q^)|O> = Lpy-, (6.22)

one may write (6.21) in the form

<6-23)

where (see also Eq. (3.24))

O = ]/ va2{- £). (6.24)

We can now easily determine the total excitation probability. We ask 
first for the probability that any one of the five oscillators belonging to a 
definite value of j is excited. This probability is

P«>-Zl«“l2 = Tz(^f)l2> (6-25)
/(

where / (&, £) is given by Eq. (2.12), i. e.,

o)z2„(0,OI2- (6.26)

We can then calculate the probability that all the D( groups of live oscil­
lators have together the total excitation energy N li a>. Since all groups have 
the same probability (6.25) of having the energy li w, we obtain in the limit 
of 9l->oo a Poisson distribution for this probability Py

(6-27)

In the old variables this result must be interpreted as the total exci­
tation probability of the vibrational state with principal quantum number N.

We shall be interested also in the amplitudes on the eigenstates (6.13). 
We shall evaluate these by calculating the amplitudes {<pn (Q) | 0 (Q)> of 
the final wave function, 0, on the eigenstates (6.20) as well as the amplitudes 
<^(.r(Q)) I 95„(Q)> of (6.13) on these eigenstates.

From (6.23) one finds directly the amplitude on the states (6.20)

< »>.«?) i (0) > -71 h -1 «<p i2](1’"“)/2.
//, i

where the quantum numbers are all 0 or 1.

(6.28)
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The amplitude of (6.13) on (6.20) follows from the expansion of a Hermite 
polynomial of a linear function of in terms of a product of Hermite 
polynomials of Q^\ One finds from ref. 10 (Vol. 2, p. 196)

According to (6.28) and (6.29), the expression for the excitation amplitude is

«n-, n-i = ^< V O (Q)) I <?bz (Q) > < (Q ) I (Q) >
n

r~r 1 / ^2_! (-i _ >_ QÉ Ï2 “ ? / '
VI M

(6.30)

We have here utilized that = 0 or 1 and have performed the summation 
over with the restriction 27 by multiplying with the number of
ways in which nfl objects may be chosen among 9? objects. When we let 
ï)( -> 00 the expression (6.30) takes the form

«n-.n-.n.n.n, =7T ^== (ty (#» 0)*"  e 2^^’^ . (6.31)

|/(v!

This equation oilers the complete solution of the excitation of pure vibra­
tional states.

It is interesting to observe that the total excitation probability (6.27) 
depends on -& and £ only through the quantity / (#, £). This means that the 
excitation probability for arbitrary & and £ can be obtained from the pro­
babilities for ?7 = tt and £ = 0 by substituting % (j), for /, i. e.,

(#, £, /) = PN (%, 0, x (<7, £)) • (6.32)

In the special case of £ = 0 this equation shows that the / (17) approximation 
(see Eq. (5.62)) in the case of vibrational states is exactly fulfilled.

The function PN (re, 0, /) is illustrated on Fig. 15, as a function of /. 
It is interesting to compare this result with the corresponding result for the 
excitation of a rotational band which is illustrated on Fig. 7. The maximum 
excitation probabilities are larger for rotational states than for vibrational 
states. However, in the latter case, higher lying stales are reached for a de­
finite value of /.

The ground state and the first excited state have the definite angular 
momenta 0 and 2. The second excited slate, however, is a triplet with spins 
0, 2 and 4. Since the vibrational states in nuclei are not pure, the degeneracy
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The excitation probability P.v of the state with principal quantum number N is given as a func­
tion of the parameter (#, £).

is in actual cases removed, and it is thus interesting to find how the total 
excitation probability (6.27) is distributed on each of the substates.

To perform this calculation one needs the expression (6.31) for the am­
plitudes on the states specified by n_2, n_1, n2. Furthermore, one needs 
the coefficients for the transformation between the z?/t and the N, I, M labell­
ing (see refs. 15 and 16).

One finds in the case of N = 2 the following result

^2.z = o~ 1/^ ^2 

^2,Z = 2 = 2/7 P2 
P2,i~4 = 18/35 P2

(6.33)

where P2 is given by (6.27) for N = 2. In this case the rule (6.32) thus also 
holds for the excitation of the substates with I = 0, 2 and 4. This is, how­
ever, not true any more for the excitation of the substates of the state with 
principal quantum number N = 3.
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7. Excitation of Coupled Rotational Bands

In the two preceding sections, we have treated the multiple Coulomb 
excitation of a pure rotational band and of a pure vibrational band, and we 
assumed there that only the rotational or vibrational degrees of freedom 
were involved in the excitation process. In actual cases several different 
degrees of freedom can be excited. One might have cases, such as in most 
deformed nuclei, where both rotational and vibrational degrees of freedom 
are involved, or one might have to consider the excitation of the intrinsic 
degrees of freedom.

In this section, we shall consider a situation where the low energy nuclear 
spectrum consists of a number of rotational bands which differ in internal 
(or vibrational) structure. The excitation of these bands can be treated rigor­
ously in the sudden approximation, in some cases when only a finite number 
of bands have to be taken into account.

In most cases, however, one will find that the parameter / (see Eq. (2.12)) 
which describes the transition between the bands is small, and one may 
then simplify the calculation by a perturbation expansion for the transition 
from one band to the others. The transitions within any one of the bands must 
in any case be treated rigorously.

We shall assume that the nuclear states are described by state vectors 
of the form

|^>= \n,K)\I,K,M\ (7.1)

where | I, K, My stands for a rotational wave function of the form (5.6) 
which only depends on the Eulerian angles describing the orientation of the 
nuclear axis, while | n, /<> describes a state of the intrinsic and vibrational 
degrees of freedom, which has a component of angular momentum K along 
the nuclear symmetry axis. The state vector | n, depends only on rela­
tive coordinates measured with respect to a coordinate system which has its 
z-axis along the nuclear axis.

In actual cases, the nuclear state vector will be a linear combination of 
state vectors of the form (7.1). Firstly, it will always contain a term identical 
with (7.1), excepl for a change of sign on K. Secondly, it may often contain 
admixtures from other bands with different values of K and n. The actual 
excitation probabilities can, however, easily be evaluated once the excitation 
probabilities for states of the simple type (7.1) are known.

It is convenient to transform the interaction energy to the rotating co­
ordinate system which has its z-axis along the nuclear axis.
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For the multipole operator (2.4) one finds

S)î (£ 2, A) - Z 0) 3Rlnt (£2,0, (7.2)
V

where the intrinsic multipole operator 9)?int (E 2, r) is independent of the 
Eulerian angles a and ß.

If we adopt the / (#) approximation, the excitation amplitude in the 
sudden approximation (3.11) may he written

// '
27 (&) Ylv(ß, 0) (7.3)

where the operator qF (#) is defined by

7iZ1e2^i:nt(JE2,r)3
5------- W--------iJ^ (7-4)

The expectation value of q(, for states within a hand is exactly the earlier 
defined quantity of qefi (#) for this band (see Eq. (5.15)),viz.,

< I q, (ÿ) I n A') - </'»> (0) Sv0 ~ <,<»> (0) <5„0. (7.5)

If the matrix elements of qp between the bands are small, and if the 
expectation value of q,, or the intrinsic quadrupole moment is not very 
different in the initial and final band, one may use a perturbation expansion 
to evaluate (7.3). We may write the amplitude (7.3) in the form

KfMf I e
i I /6J5~ ff (#) ^2,0 0)

X < fli, le-‘^ 7<#)1 01 I IK, > I I,K, M, >,
(7-6)

where q ($) is the q for the initial band. We then perform a series expansion 
of the second exponential whereby we obtain the following expression for 
the excitation amplitude for a band different from the ground state band:

„(/) Eq KfMi
(7.7)

The excitation probability in the perturbation treatment can thus be written 
in the form

dp-4/^,0 W) (7-8)
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where we have introduced the notation

<I!'■«<> <fKf\m(E2.v-)\iK,-> 
r,,~ ?(♦) "" "</Äi|S)i(E2, 0)1/7^ >'

From (7.7), one observes that the total probability of exciting any member 
of the final band is given by the simple expression

_16r? j9W]2. (710)
z ’ 40

This result is identical with the expression which would be obtained in the 
ordinary perturbation theory for q « 1, and one sees that the strong 
coupling within the bands give rise only to a redistribution of the single 
probabilities PjP.

In the perturbation treatment which we have used here one may also 
approximately take into account the effect of finite £. If the energy dif­
ference between the ground states of the two bands is larger than the energy 
of the lowest states in the bands, the £ corresponding to the possible transi­
tions between the two bands will be approximately constant. One may then 
take £ into account by calculating the total transition probability (7.10) for 
the finite £ in the ordinary perturbation treatment and apply the same distri­
bution as for £ = 0.

The matrix clement (7.7) can be expressed in terms of the functions
M (tc, q) (see Eq. (5.9)) by expanding the product of D-functions in 

terms of /^-functions (compare also Eq. (5.20)). The result has been evaluated 
in the special case of It = 0. For a band with Kf = 2, one finds

o - - > | '■// '/ W I ■■ < / I > 7 ( / + 1 ) (7+2X27+1)

x (2(27 + 1) (2773) A' + 2- 0 (î “ (27-l)(27+3) 0 (</ ( 1 ' " )

T 2 (2 / mTT/Vi) ‘4,_2’ "(</

For a band with Kf = 0 one finds similarly

-O+a.oCq W) +x
I 3(7+1) (7 + 2) 
|(27+l)(27+3)

27(7+1) 
(27-l)(27 + 3)

3(7-1)/ 
(27- 0 (27+0

-0-2,o(f/W)?-

(<?W) (7.12)
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The resulting excitation probabilities are given in Figs. 16 and 17 in 
terms of the coefficients This coefficient is plotted for Kf = 0,
I = 0, 2 and 4 and for /Ç = 2, / = 2 and 4. The states with odd spins in the 
K = 2 band are not excited in the q ($) approximation.

The perturbation treatment (7.7) is only correct if the quantity rif q(&) 
is smaller than one (compare Fig. 2).

If the bands are strongly coupled through the interaction with the projec­
tile one may evaluate the matrix element (7.3) by a diagonalization method. 
We thus introduce a unitary transformation 17 which diagonalizes the matrix 
elements of the exponent in (7.3), i. e.,

< aKa i U'Z Ar W Yj.Aß. 0) v I bK„ >-«,„■ Ae. (7.13) 
V

The result (7.3) can then be written in the form

_ ■ i Z64 71

' 45 (7.14)
z

Since 2 and the unitary matrix U in the general case depend on the Eulerian 
angle ß in a rather complex way, this result is of practical interest only in 
some special cases. We shall consider the case where only two bands are 
involved in the excitation process. We assume that they have the same in­
trinsic quadrupole moment and that Kt = Kf. The matrix diagonalization is 
then easily performed and one finds the result

aIKM ~ 2 (rZ/M [q (1 + aIM [9(1

aIKM = ~aIM tø G — •
(7.15)

It is interesting to compare this result with the result (7.7) from the per­
turbation treatment. In Fig. 18 we have plotted the excitation probability for 
the state | 2,0,0 > as a function of q for different values of r. It is seen that 
the perturbation treatment is correct if rq< 1, as was to be expected. This 
condition will in actual cases usually be fulfilled.

If I Kf-Ki I is larger than 2 the transition between the bands is K for­
bidden. A possible transition between the bands can then occur only if the 
wave function (7.1) contains admixtures from other bands. Such admixtures 
can also play an important role in K allowed transitions<18).
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Fig. 16. The excitation probability of a weakly coupled pure rotational band with K = 0 in 
an even-even nucleus. The figure shows the coefficient A^o in the perturbation treatment (see 
Eq. (7.8)) for I = 0,2 and 4 as a function of q (■&), which is assumed to be the same for the two bands.

Fig. 17. The excitation probability of a weakly coupled, pure rotational band with /C = 2 in 
an even-even nucleus. The figure shows the coefficient in the perturbation treatment (see 
Eq. (7.8)) for 1 = 2 and 4 as a function of q (/>) which is assumed to be the same for the two 
bands. In the q ( &) approximation, which has been used for the evaluation of A’, the states with 

odd I are not excited.

8. Conclusion

The multiple Coulomb excitation has until now been observed only in 
a few cases, but, from these observations (see refs. 5 and 6) as well as from 
the survey given in the present paper, it seems that a large number of ex­
perimental possibilities are offered. Especially it seems promising to in­
vestigate the excitation of the vibrational degrees of freedom of the nucleus, 
since our present knowledge on such states is rather limited. It is known 
that the vibrational states are mostly rather impure and for a quantitative 
comparison one may need some modification of the present theory. Simi-
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Fig. 18. The excitation probability of a strongly coupled pure rotational band with K = 0.
The figure shows the excitation probability of the Z = 2 state for different values of the coupling 
r (see Eq. (7.9)). The probabilities are given as functions of q (#) which is assumed to be equal 

in the two bands.

larly deviations from the pure rotational model have been observed. 
These deviations introduce a number of new parameters in the theory, and 
these can, in turn, be determined by a comparison of the experimental cross 
sections with the theory. On the other hand the increasing number of para­
meters make a systematic tabulation of cross sections increasingly difficult.
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the authors (A.W.) at the Federal Institute of Technology in Zürich, Switzer­
land. We wish to thank Professor Paul Scherrer for making this stay possible. 
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our work.
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